• 제목/요약/키워드: Heat Generation Rate

검색결과 342건 처리시간 0.023초

히스테리시스 손실에 의한 괘도부품의 온도 추정에 관한 연구 (A Study on the Estimation of Temperature in Track Components due to Hystresis Loss.)

  • 김형제;김병탁;백운경
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.48-55
    • /
    • 2001
  • In many applications. rubber components undergo dynamic stresses or deformations of fairly large magnitude. Since rubbers are not fully elastic, a part of the mechanical energy is converted into heat due to the hysteresis loss. Heat generation without adequate heat dissipation leads to heat build up. i. e. internal temperature rise. The purpose of this paper is to predict temperature rise caused by the hysteresis loss, in a rubber pad subjected to complex dynamic deformation. In this unsteady thermal analysis, the temperature distributions of track components are displayed in contour shapes and the temperature variations of some important nodes are represented graphically with respect to the running time of the tank.

  • PDF

유기랭킨사이클을 이용한 병렬 열병합 발전시스템의 열역학적 이론 성능 특성 (Theoretical Characteristics of Thermodynamic Performance of Combined Heat and Power Generation with Parallel Circuit using Organic Rankine Cycle)

  • 김경훈
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.49-56
    • /
    • 2011
  • In this study a novel cogeneration system driven by low-temperature sources at a temperature level below $190^{\circ}C$ is investigated by first and second laws of thermodynamics. The system consists of Organic Rankine Cycle(ORC) and an additional heat generation as a parallel circuit. Seven working fluids of R143a, R22, R134a, R152a, $iC_4H_{10}$(isobutane), $C_4H_{10}$(butane), and R123a are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid and optimum turbine inlet pressure are considered to extract maximum power from the source. Results show that due to a combined heat and power generation, both the efficiencies by first and second laws can be significantly increased in comparison to a power generation, however, the second law efficiency is more resonable in the investigation of cogeneration systems. Results also show that the working fluid for the maximum system efficiency depends on the source temperature.

해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석 (Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation)

  • 류종혁;정현석;정석권
    • 수산해양기술연구
    • /
    • 제60권2호
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

열전달 에 의한 비가역성 을 고려한 열기관 성능 해석 (Analysis of a Heat Engine with the Irreversibility by the Heat Transfer)

  • 김성진;정평석;노승탁
    • 대한기계학회논문집
    • /
    • 제8권6호
    • /
    • pp.564-568
    • /
    • 1984
  • 본 연구에서는 실제 동력 발생장치에 사용되는 사이클은 장치의 크기를 고려 한 파라미터의 선정이 필요하며, 여기서는 열전달에 의한 비가역성을 고려할 때의 열 기관 사이클을 출력에 중점을 두어 해석하고자 한다. 그리고 비가역성에 의한 엔트 로피 생성량과 출력과의 관계도 살펴볼 것이다.

나선형 냉각 자켓의 유량에 따른 냉각 특성 (A Study on the Cooling Characteristics of Helical Type Cooling-Jacket according to the Flow Rate)

  • 김태원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.231-235
    • /
    • 1999
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. for the analysis, three dimensional model for the cooling jacket is built by using finite volume method. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficients on the boundary. The temperature distributions and the cooling characteristics are analyzed by using the commercial software FLUENT. Numerical results show that stream-wise cross section area and flow rate are important factors for cooling characteristics of cooling jacket. Cooling performance of cooling jacket is good in condition that stream-wise cross section's horizontal length is close to its vertical one and flow rate is high. This results show that heat transfer is dominated by velocity profile and heat transfer area.

  • PDF

Design and neutronic analysis of the intermediate heat exchanger of a fast-spectrum molten salt reactor

  • Terbish, Jamiyansuren;van Rooijen, W.F.G.
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2126-2132
    • /
    • 2021
  • Various research groups and private interprises are pursuing the design of a Molten Salt Reactor (MSR) as one of the Generation-IV concepts. In the current work a fast neutron MSR using chloride fuel is analyzed, specially analyzing the power production and neutron flux level in the Intermediate Heat Exchanger (IHX). The neutronic analysis in this work is based on a chloride-fuel MSR with 600 MW thermal power. The core power density was set to 100 MW m-3 with a core H/D [[EQUATION]] 1.0 amd four Intermediate Heat Exchanger (IHX). This leads to a power of 150 MW per IHX; this power is also comparable to the IHX proposed in the SAMOFAR framework. In this work, a preliminary design of a 150 MW helical-coil IHX for a chloride-fueled MSR is prepared and the fission rate, capture rate, and inelastic scatter rate are evaluated.

복합발전기 조합별 증분비 곡선 재설정에 관한 연구 (A Study on the Resetting of Incremental Heat Rate Curve of Combined Cycle Unit by Combination)

  • 홍상범;최준호
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.8-12
    • /
    • 2019
  • Combined Cycle Unit(CC) generates the primary power from the Gas Turbine(GT) and supplies the remaining heat of the GT to the Steam Turbine(ST) to generate the secondary power from the ST. It plays a major role in terms of energy efficiency and Load Frequency Control(LFC). Incremental Heat Rate(IHR) curves of economic dispatch(ED) of CC is applied differently by GT/ST combination. But It is practically difficult because of performance test by all combinations. This paper suggests a reasonable method for estimating IHR curves for partial combinations(1:1~(N-1):1) using IHR curves when operating with GT alone(1:0) and with all(N:1) combinations of CC.

자동차 배기가스 유량 및 온도 변화에 따른 열전발전용 열교환기 발열량 특성에 관한 연구 (Thermal Caracteristics of the Automobile Exhaust gas based Heat exchanger with various Exhaust gas Temperature and Mass flow rate)

  • 김대완;기한 에카나야케;이무연
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.15-20
    • /
    • 2018
  • 본 논문은 자동차 열전발전용 열교환기에서 배기가스의 유량과 온도 변화에 따른 발열량 특성을 수치적으로 연구하였다. 자동차 열전발전용 열교환기는 내부에 핀을 설치하여 자동차 배기가스에서 나오는 열에너지를 열전소자로 최대 값을 전달할 수 있도록 하였으며, 상용 프로그램인 CAD를 이용하여 설계하였다. 그리고 배기가스의 유량과 온도 변화에 따른 열교환기 발열량 특성을 분석하기 위하여 상용 프로그램인 ANSYS CFX v17.0을 이용하여 배기가스 유량은 0.01, 0.02, 0.03 kg/s로 변화시키고, 배기가스 온도는 400, 450, 500, 550, $600^{\circ}C$로 변화시켜 수치해석 하였다. 결론적으로 열교환기의 입구 측과 출구 측 배기가스 압력 차는 배기가스의 유량에 따라 결정된다. 배기가스 유량이 증가하면 열교환기 입구 측과 출구 측 압력차는 증가하지만, 열교환기 입구 측과 출구 측 배기가스 압력차는 배기가스 온도에 따라 변하지 않는다. 따라서 열교환기 표면 온도를 최대 값으로 얻기 위해서는 배기가스 유량은 낮추고, 배기가스 온도는 높여야 한다는 결론을 도출하였다.

통신 함체 냉각용 알루미늄과 플라스틱 열교환 소자의 성능 비교 (Aluminum and Plastic Heat Exchange Element : A Performance Comparison for Cooling of Telecommunication Cabinet)

  • 김내현
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.279-288
    • /
    • 2017
  • Heat generation rate in a telecommunication cabinet increases due to the continued usage of mobile devices. Insufficient removal of heat intensifies the cabinet temperature, resulting in the malfunction of electronic devices. In this study, we assessed both aluminum and plastic heat exchangers used for cooling of the telecommunication cabinet, and compared the results against theoretical predictions. The aluminum heat exchanger was composed of counter flow parallel channels of 4.5 mm pitch, and the plastic heat exchangers were composed of cross flow triangular channels of 2.0 mm pitch. Samples were made by installing two plastic heat exchangers in both series and parallel. Results showed that the heat transfer rate was highest for the series cross flow heat exchanger, and was least for the aluminum heat exchanger. The temperature efficiency of the series cross flow heat exchanger was 59% greater than that of the aluminum heat exchanger, and was 4.3% greater than that of the parallel cross flow heat exchanger. In contrast, the pressure drop of the parallel cross flow heat exchanger was significantly lower than other samples. The heat exchange efficiency was also the largest for the parallel cross flow heat exchanger. The theoretical analysis predicted the temperature efficiency to be within 3.3%, and the pressure drop within 6.1%.

표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출 (Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis)

  • 이천규;정효재
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.