• Title/Summary/Keyword: Heat Flow Meter Method

Search Result 17, Processing Time 0.024 seconds

Development of machinery parts test device for the rising high temperature and measuring large and tiny scale torque (기계류부품의 고온상승, 고 토크와 미소토크의 시험장치 개발)

  • Lee, Yong Bum;Park, Hong Won;Lee, Geun Ho
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • For a reliability assessment of machinery parts, accurate performance test, environmental test, life test, etc. are required on the sample. In the performance test conditions of various machinery parts, some problems happen such as needs to rise temperature rapidly with large flow of oil having very low thermal conductivity and to measure very high torque or tiny torque, etc. This study brings out the method to apply heat to rise temperature for large flow of oil without chemical change in a performance test of oil cooler. To measure large scale of torque in a performance test of planetary gearbox of excavator, the method of torque measurement is proposed by replacing the large torque meter priced very expensive. To measure very small torque on lubricated friction, a methode of force balance type test mechanism is introduced for tests of piston assembly.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

The study of in-situ measurement method for wall thermal performance diagnosis of existing apartment (기존 공동 주택의 벽체 열성능 현장 측정법에 관한 연구)

  • Kim, Seohoon;Kim, Jonghun;Yoo, Seunghwan;Jeong, Hakgeun;Song, Kyoodong
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • Purpose : The energy saving in a residential building (apartment) sector is known as one of the effective solution of energy reduction. In South Korea, the government has recently reinforced regulations associated with the energy performance of buildings. However, there is a lack of research on the methods for the energy performance diagnosis that is used to analyze the wall thermal performance of the existing apartments. Because a reliable diagnosis is necessary to save the building energy, this study analyzed wall thermal performance of an existing apartment in Seoul. Method : This paper applied two methods for analysis of the thermal insulation performance; HFM(Heat Flow Meter) method and ASTR(Air-Surface Temperature Ratio) method. The HFM method is suggested by ISO9869-1 code to measure the thermal performance. The ASTR method is proposed by this study for the simplified In-situ measurement and it uses three temperature data (interior wall surface, interior and exterior air) and the overall heat transfer coefficient. This study conducted the experiment of an existing apartment in Seoul using these methods and analyzed the results. Furthermore, the energy simulation tool of the building was used to suggest retrofit of the building based on the results of measurements. Result : The error rate of HFM method and ASTR method was analyzed in about 17 to 20%. As the results of comparison between the initial design values of the wall and the measured values, the 26% degradation of insulation thermal performance was measured. Lastly, the energy simulation tool of the building shows 10.8% energy savings in accordance with the construction of suggested retrofit.

Calculation of Adequate Remodeling Period for The Improvement of Thermal Insulation Performance of External Walls in Deteriorated Apartments

  • Choi, Doo-Sung;Lee, Myung-Eun
    • KIEAE Journal
    • /
    • v.17 no.2
    • /
    • pp.5-12
    • /
    • 2017
  • Purpose: Under the purpose of presenting the adequate remodeling period for the improvement of thermal insulation performance of external walls in deteriorated buildings, the change in external wall and residential environment problem(dew condensation) due to aged deterioration after the apartments were constructed in Korea were analyzed. Method: Temperature Difference Ratio Outside(TDRo) and Heat Flow Meter(HFM) were used as measurement methods to evaluate the thermal insulation performance of deteriorated buildings. For TDR evaluation, thermo-graphic camera was used to measure and analyze the surface temperature of external wall. Also, dew condensation evaluation was analyzed using the Temperature Difference Ratio Inside(TDRi). Result: As a result of analyzing thermal performance through TDRo, the first decline point of thermal insulation performance began after 14-16 years have passed since construction was completed, and after 20 years have passed the decline point of thermal insulation performance reappeared. As a result of analyzing U-value with HFM measurement method, the decline rate of external wall's thermal insulation performance is lower than 2% in average at around 5 years after completion, and 8.7% in average at 10-15 years, and over 10.2% in average at 20 years.

Experimental study on the discharge coefficients and cavitation of conical orifices (원추형 오리피스의 유출계수와 캐비테이션에 관한 실험적 연구)

  • Kim, Byeong-Chan;Yun, Byeong-Ok;Park, Bok-Chun;Jo, Nam-O;Ji, Dae-seong;Jeong, Baek-Sun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1371-1379
    • /
    • 1997
  • The high pressure drop is frequently required in the by-pass line of the pump or of the heat exchanger in power plants. However, cavitation produced by a high pressure drop could damage the pipe and pump blades. Conical orifices are adopted to reduce cavitation due to high pressure drop. The discharge coefficients of conical orifice plates were measured by weighing method in the standard water flow system. The discharge coefficients were larger when the ratios of thickness of orifice edge to throat diameter were larger. The noise generated from a conical orifice due to cavitation was measured with a sound level meter and a hydrophone. With increasing the bore diameter of the orifice, the sound pressure level or the noise level due to cavitation became higher. The noise level was suddenly increased at the inception of cavitation.

Design and Evaluation of Ultrasonic Flow Meter for High Temperature by Using Finite Element Method (유한요소법을 이용한 고온용 초음파 유량센서의 설계 및 평가)

  • Lee, Joo-Hee;Kim, Chang-Il;Paik, Jong-Hoo;Cho, Jeong-Ho;Jeong, Young-Hun;Lee, Young-Jin;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.859-864
    • /
    • 2011
  • An operation temperature of $Pb(Zr,Ti)O_3$ based piezoelectric ultrasonic flowmeter was generally restricted to below 200$^{\circ}C$ due to a low depoling temperature of its ceramic material. Thus, a new designed piezoelectric ultrasonic flowmeter was fabricated in order to protect from the extremely hot fluid. Its structure is optimized by a finite element method to effectively stop heat flowing along a waveguide. Various materials such as Cu, Al, SUS were examined as a multi-plate radiation shield to enhance the performance of piezoelectric ultrasonic flowmeter. The SUS was evaluated as the most effective material to enhance the performance of piezoelectric ultrasonic flowmeter. As the number of plates of the radiation shield increased, the temperature at piezoelectric transducer away from the hot fluid was constantly decreased with a ratio of 3.12$^{\circ}C$ per the plate number.

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.