• Title/Summary/Keyword: Heat Cycle

Search Result 1,588, Processing Time 0.027 seconds

A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress (Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구)

  • Hong, Sang-Hyuk;Hong, Chun-Hyi;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

Characteristics of STS 304 Rolled Steel by High Temperature Low Cycle Fatigue (고온 저주기 피로에 의한 STS 304 압연강재의 특성연구)

  • Kim, C.H.;Park, Y.M.;Bae, M.K.;Shin, D.C.;Kim, D.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.12-16
    • /
    • 2019
  • In this study, strain-controlled low cycle fatigue test for hot rolled STS304 steel was carried out at $400^{\circ}C$ and $600^{\circ}C$, respectively. High temperature fatigue test was done using an electric furnace attached on the hydraulic fatigue test machine. The results of this study show that STS304 hot rolled steel has excellent static strength and fatigue characteristics. The hysteresis loop at half life was obtained in order to calculate the elastic and plastic strain. Also, Relationship between strain amplitude and fatigue life was examined in order to predict the low cycle fatigue life of STS304 steel by Coffin-Manson equation.

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

Development of a Compression/Absorption Hybrid Heat Pump System Using $NH_3/H_2O$ Mixture for High Temperature Generation ($NH_3/H_2O$를 이용한 압축-흡수식 고온제조 하이브리드 히트펌프 시스템 개발)

  • Kim, Min-Sung;Baik, Young-Jin;Shin, Kwang-Ho;Park, Seong-Ryong;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1249-1254
    • /
    • 2008
  • Industrial low temperature waste heat exists sparse in surroundings but its amount is huge. However, large portion of waste heat is discarded due to its poor recovery quality and inferior application technologies. The heat pump system in this research is based on the hybrid combination of compression cycle and absorption cycle in order to recycle various kind of industrial waste heat effectively. The prime objective is to design a compression absorption hybrid heat pump system which can produce high temperature above the level of $90^{\circ}C$ and low temperature of $20^{\circ}C$ at the same time using waste heat water of $50^{\circ}C$. A mathematical simulation was carried out as a basis to design a prototype 3 RT class hybrid heat pump. From the simulation results, fundamental parameters to design the system were obtained.

  • PDF

Economic Assessment of the Heat Recovery from Incineration Plants Based on Regression Analysis (회귀분석을 이용한 소각장의 소각열 회수 경제성 분석 연구)

  • Yoon, Jungmin;Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.3-12
    • /
    • 2014
  • This study aims at providing an economic assessment for incineration plants which recover heat during its incineration process. In this study, Life Cycle Cost(LCC) of incineration plants is performed based on each regression analysis formula for construction cost, operation cost, and heat generation in order to compare economic feasibility. The result shows that the incineration plant recovering waste heat while processing 80 tons of waste per day increases both initial investment and operation cost but this type of an incineration plant has economical predominance from the recovered waste heat over the one that does not recover heat when being operated for more than eleven years if the retrieved heat replaces the use of LNG. And its payback time reaches more than 19 years in case of selling heat and performing emission trading.

A Study for the Improvement of the Life Cycle of Press Die using Wire Cut Discharge Machining (와이어 컷 방전가공 시 프레스금형 수명 향상에 대한 고찰)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.61-67
    • /
    • 2017
  • Research into the selection of suitable materials and the development of fast processing methods for press die manufacturing is absolutely necessary to reduce the production time and cost. In particular, knowledge of its heat properties must be considered whendeveloping a long press die. Generally, as the main component materials of press dies, Cr, W low alloy tool steel, high carbon-high chrome steel, high speed steel, etc., are used as thetooling steel for the cold die. Machine tools and wire-cut electric discharge machining are mainly used for processing the press die parts. There are many differences in the machining time and life cycle of die parts depending on the machining process. The parts produced by milling and grinding have a high manufacturing time and cost with a long life cycle, while thosemade by milling and wire-cut discharge machining have areduced manufacturing time and cost,whereastheir die life cycle is reduced. Therefore, in this study, we will discuss amethod of improving the life cycle of the die parts by using heat treatment as a processing method that reduces the manufacturing time and cost. SEM, EDS analysis and the surface roughness analysis of the surface and center of the workpiece are used for analyzing the specimens produced by three machining methods, viz. milling - grinding, milling - wire cut discharge, and milling - wire cut discharge - heat treatment. A method of making die parts having the same life cycle as those produced by milling - grinding is developed with the milling - wire cut discharge - high temperature tempering method.

A Study on the Heat-Storage/-Release Characteristics of a Regenerative Heat Exchanger Utilizing the Reversible Thermochemical Reaction of $Ca(OH)_2/CaO$ ($Ca(OH)_2/CaO$ 계의 가역 열화학 반응열을 이용한 축열식 열교환기의 축열 및 방열특성에 관한 연구)

  • Lee, Soo-Kag;Kim, Hong-Jea;Lee, Jin-Kook
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.22-30
    • /
    • 1989
  • Since the energy storage method by means of the thermochemical reaction has no heat loss by separating the reactants under the storage period, it is remarked as one of promising means particularly for long-term heat storage. In this study, the heat-storage/-release characteristics of the reversible chemical reaction cycle, $Ca(OH)_2/CaO$, is numerically analysed by a mathematical modelling. As a result, the effectiveness of the heat exchanger by the chemical heat storage method is considerably higher than that by the sensible heat storage method. It is found that the major parameters, which determines the effectiveness of the heat exchanger, are the mass flow rate and inlet temperature of fluid, the residence time, etc.. The heat-storage/-release period can be controlled by changing the operation conditions. It is expected that the results obtained here will supply useful informations in designing a regenerative heat exchanger utilizing the thermochemical reaction.

  • PDF

The Study on the Mechanical Properties and Formability of Non-Heat-Treated Cold Forging Steels (냉간 단조용 비조질강의 성형성과 기계적성질 연구)

  • Lee, Yeong-Seon;Lee, Jeong-Hwan;Lee, Sang-Yong
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.530-538
    • /
    • 1998
  • Elimination of the heat treatment process is very important in automation of metal forming since controlling heat treatment by computer has many difficulties and it has bottle neck problem. non-heat-treated steels materials which are not in need of heat treatment have been developed for cold forging. However to apply non-heat-treated steel to structural parts. it is necessary to prove reliability of mechanical properties. In order to define the reliability of mechanical properties we have investigated microstructure, hardness, the tensile strength compressive strength and tensile fatigue strength for both steels. Considering the results of high cycle fatigue test for both specimen the characteristics of non-heat-treated steel are decided on the yield strength, It has same tendency for heat-treated steel. Therefore non-heat-treated steel which has the appropriate yield strength may be applied in cold forging.

  • PDF

A study on the application Heat Pump to Rolling Stock Air conditioner (히트펌프식 냉난방장치의 철도차량 적용에 관한 연구)

  • Kweon, Tae-Kyun;Song, Young-Jeong;Jeong, Gwang-Moo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1689-1696
    • /
    • 2008
  • Heat pumps transfer heat by circulating a substance called a refrigerant through a cycle of evaporation and condensation. But Heat pumps system by only using heat-source is not efficient. Because the mean temperature of North Korean winter season is low, economy of air heat-source heat pump descend. This paper is practiced the simulation on evaluation criteria for Heat pump heating and cooling systems to Rolling Stock. Efficiency of the heat pump in order improving from certainly the development of the technique will be able to prevent a freezing actual condition must proceed. As a result, Below $-10^{\circ}C$ used heating and cooling systems of heat pump format even in cold winter season and is serviceable confirmed with heat source supply circle of the Rolling Stock.

  • PDF

A STUDY ON THE DISTORTION OF THE COPINGS FOR CERAMOMETAL CROWNS DURING REPEATED FIRING (도재전장금관을 위한 코핑의 변형에 관한 연구)

  • Lee, Ki-Hong;Chung, Hun-Young;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.706-718
    • /
    • 1997
  • Ceramometal crowns are common restorations in fixed prosthodontics because of their casting accuracy, the high strength properties of the metal, and the cosmetic appearance of porcelain. However, deterioration of the initial fit of the metal coping has been observed after the porcelain firing cycle. The distortion due to repeated firing makes it difficult to fit crown margin and elicits microleakage. The major causes of distortion are the residual stress that accumulate during wax-up, casting, cold work and the induced stress caused by the mismatch of porcelain-metal thermal contraction. This study examined the marginal fit changes of metal copings in relation to repeated firing and the effects of heat treatment that reduce the distortion resulted from residual stress. The marginal changes of the copings that were treated with conventional method and those treated with heat before repeated firing, were evaluated. The metal die which represented preparations of a maxillary central incisor was fabricated, and 45 wax patterns were cast with nonprecious metal alloys. The heat treatment of each group was performed as follows. Group 1(control) : Casting - Devesting - Cold work - Firing Group 2 : Casting - Heat treatment - Devesting - Cold work - Firing Group 3 : Casting - Devesting - Cold work - Reinvesting - Heat treatment - Devesting - Firing The copings were fired 3 times. After each firing, the marginal fit changes were measured with inverted metallurgical microscope at the 4 reference points located at labial, lingual, and both proximal surface. Measurements were compared, and statistically analyzed. The results were as follows ; 1. In all groups, the highest value of marginal fit changes of the copings studied were found after the first firing cycle. 2. When the distortion of each experimental group at the first firing cycle were compared, group 1 exhibited the greatest changes($20-27{\mu}m$), followed by group 2($9-13{\mu}m$), and group 3($8-10{\mu}m$). 3. The copings treated with heat before devesting(group 2) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 4. The copings treated with heat after reinvesting(group 3) revealed significantly smaller marginal fit changes than the copings treated with conventional method(group 1). (p<0.01) 5. No siginificant differences in marginal fit changes were found between the copings treated with heat before devesting(group 2) and the copings treated with heat after reinvesting(group 3). (p>0.01)

  • PDF