• 제목/요약/키워드: Heat Cycle

검색결과 1,576건 처리시간 0.023초

탄화수소계 냉매 R-290을 사용하는 냉동.공조 장치의 사이클 특성에 관한 연구 (Cycle performance of refrigeration and air-conditioning system using the hydrocarbon refrigerant R-290)

  • 박기원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.447-452
    • /
    • 1999
  • This paper describes the cycle performance of heat-pump system using R-22 and R-290. Experiments were performed in the smooth tube with inside diameter of 10.07mm and outside diameter of 12.07 mm and grooved inner tube having 75 fins with a height of 0.25mm Condensing temperatures were held constantly between 318K and 328 K while evaporating temperatures were varied from 257 K to 288 K mass velocities from 51 to $280 kg/m^2s$. From the experiments it was known that the evaporating temperature and condensing temperature had more affected by the compressor shaft power than the tube geometries. Cooling capacity of the R-22 and R-290 had similar values in the smooth and grooved inner tubes. The coefficient of performance(COP) was calculated using the compressor shaft power volumetric refrigeration capacity compression ratio and cooling capacity. The COP of the R-290 had slightly higher values than that of R-22 The major parameters affecting the heat pump cycle performance wee the refrigerant proper-ties and operating conditions rather than the geometric shapes of the heat exchanger

  • PDF

유기 플래쉬 사이클(OFC)의 열역학적 성능 특성 (Characteristics of Thermodynamic Performance of Organic Flash Cycle (OFC))

  • 김경훈;정영관;박상희
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.91-97
    • /
    • 2013
  • Recently a novel cycle named organic flash cycle (OFC) has been proposed which has improved potential for power generation from low-temperature heat sources. This study carries out thermodynamic performance analysis of OFC using various working fluids for recovery of low-grade heat sources in the form of sensible energy. Special attention is focused on the optimum flash temperature at which the exergy efficiency has the maximum value. Under the optimal conditions with respect to the flash temperature, the thermodynamic performances of important system variables including mass flow ratio, separation ratio, heat addition, specific volume flow rate at turbine exit, and exergy efficiency are thoroughly investigated. Results show that the exergy efficiency has a peak value with respect to the flash temperature and the optimum working fluid which shows the best exergy efficiency varies with the operating conditions.

베어링강 SUJ2의 냉간 단조성 향상을 위한 열처리에 관한 연구 (A Study on Heat Treatment for Improving Cold Forgeability of a Bearing Steel, SUJ2)

  • 김해지
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.24-30
    • /
    • 2009
  • In this paper, the effect of heat treatment on forgeability is investigated and an improved heat treatment cycle is proposed for the bearing steel, SUJ2. An application example of a bearing inner race cold forging, which has small cracks in the bottom after backward extrusion and piercing, is found from a cold forging industry. The process is evaluated by finite element analysis and several heat treatment cycles are examined in order to propose an improved heat treatment cycle. The effect of heat treatment on material hardness and tool life, dimensional accuracy and forming load is revealed through experiment.

  • PDF

열펌프 건조기의 기본 설계를 위한 건조 성능 해석 (Drying Performance Simulation for the Basic Design of a Heat Pump Dryer)

  • 이공훈;김욱중
    • 대한기계학회논문집B
    • /
    • 제31권10호
    • /
    • pp.860-867
    • /
    • 2007
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison with conventional air drying. In the present study, the performance simulation for the basic design of a heat pump dryer has been carried out. The simulation includes one-stage heat pump cycle, simple drying process using the drying efficiency. As an example, the heat pump cycle with Refrigerant 134a has been investigated. For the operating conditions such as the average temperature of the condenser, the heat rate released in the condenser, the flow rate of drying air, and drying efficiency, the simulation has been carried out to figure out the performance of the dryer. The parameters considered in the design of the dryer are COP, MER, SMER, the rate of dehumidification, the temperature and humidity of drying air and those parameters are compared for different conditions after carrying out the simulation.

LNG 열교환기의 압력강하에 따른 천연가스 액화용 초저온 캐스케이드 냉동사이클 특성 (Characteristics of Cryogenic Cascade Refrigeration Cycle for Liquefaction of Natural Gas with the Pressure Drop of Heat Exchanger)

  • 윤정인;최광환;손창효;곽진우;백승문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.756-761
    • /
    • 2012
  • 천연가스는 $-160^{\circ}C$까지 냉각 및 액화되어 액화천연가스(LNG)가 되고, 이때 LNG의 체적은 천연 가스의 1/600로 줄어든다. 이로 인해 LNG는 수송시에 이점이 있다. 본 연구에서는 천연가스 액화용 초저온 캐스케이드 냉동사이클의 LNG 열교환기내 냉매와 천연가스의 압력강하가 액화사이클에 미치는 영향을 파악한 후, LNG 열교환기 설계시 압력강하에 대한 기준안을 제시하고자 한다. 이를 위해 HYSYS를 이용하여 초저온 캐스케이드 액화사이클 내 LNG 열교환기의 압력강하에 대해서 시뮬레이션을 수행하였다. 그 결과, 초저온 액화사이클의 압축일량과 성능계수(COP)의 증가로부터, LNG 열교환기 내의 압력강하는 50 kPa정도를 기준 설계 압력강하로 설정할 수 있음을 알 수 있었다.

저속 디젤기관에서 흡기밸브 닫힘시기 지연시 고팽창 실현을 위한 열효율 특성 (A Chancteristic of Thermal Efficiency in Order to High Expansion Realization with a Retard of Intake Valve Closing Time in the Low Speed Diesel Engine)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.42-49
    • /
    • 2006
  • In this research. the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engines to the high expansion diesel cycle, and general cycle features were analyzed after comparing these two cycles. Based on these analyses. an experimental single cylinder a long stroke with high expansion-diesel engine. of which S/B ratio was more than 3, was manufactured. After evaluating the base engine through basic experiments, a diesel engine was converted into the high expansion diesel engine by establish VCR device and VVT system Accordingly, the high expansion diesel cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case, heat efficiency increased by $5.0\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle, heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged pressure equipment. Then a high expansion diesel cycle engine is realized.

고온측 냉매에 따른 이원 냉동시스템의 성능 분석 (Performance Analysis of Cascade Refrigeration System with Respect to Refrigerants Appling to High Temperature Cycle)

  • 윤정인;전민주;손창효
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.45-50
    • /
    • 2017
  • This paper presents the Coefficient of performance(COP) and mass flow ratio of cascade refrigeration system with respect to refrigerants appling to high temperature cycle. The operating parameters considered in this study include degree of superheating and subcooling, compressor efficiency, evaporating temperature, condensing temperature and internal heat exchanger effectiveness in high temperature cycle. The result of this study is as follows : The COP of cascade system increases with increasing degree of superheating and subcooling, compressor efficiency and internal heat exchanger effectiveness except increasing condensing temperature. The mass flow ratio of low and high temperature cycle increases with increasing evaporating temperature and condensing temperature, but decreases with increasing internal heat exchanger effectiveness, degree of superheating and subcooling. Also, the mass flow ratio has no correlation with compressor efficiency at high temperature cycle.

비단열 모세관의 영향을 고려한 냉동 사이클 시뮬레이션 (Simulation of the Refrigeration Cycle Equipped with a Non-Adiabatic Capillary Tube)

  • 박상구;손기동;정지환;김윤수
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.131-139
    • /
    • 2009
  • The simulation of refrigeration cycle is important since the experimental approach is costly and time-consuming. The present paper focuses on the simulation of a refrigeration cycle equipped with a capillary tube-suction line heat exchanger(SLHX), which is widely used in small vapor compression refrigeration systems. The present simulation is based on fundamental conservation equations of mass, momentum, and energy. These equations are solved through an iterative process. The non-adiabatic capillary tube model is based on homogeneous two-phase flow model. This model is used to understand the refrigerant flow behavior inside the non-adiabatic capillary tube. The simulation results show that both of the location and length of heat exchange section influence the coefficient of performance (COP).

배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석 (Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization)

  • 김동섭
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

열교환기 온도차에 따른 새로운 LNG 액화사이클의 성능 특성 (Performance Characteristics of New LNG Liquefaction Cycles with Temperature Differences in the Heat Exchangers)

  • 윤정인;손창효
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.51-56
    • /
    • 2014
  • In this paper, the performance of the $CO_2-C_2H_6-N_2$ cascade liquefaction cycle with respect to temperature differences in the LNG heat exchangers is analyzed theoretically using HYSYS software and then compared the COP(coefficient of performance) of the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ and $CO_2-N_2O-N_2$. In comparison of COP of three cycles, the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ showed the highest COP. And the liquefaction cycle using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$ presented the second and third highest COP, respectively. In case of COP, the $C_3H_8-C_2H_4-C_1H_4$ cascade liquefaction cycle yields better COP. But, in terms of the environment and maintain, it is confirmed that the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ provides favorable characteristics.