• Title/Summary/Keyword: Heat Control

검색결과 3,689건 처리시간 0.028초

제어 알고리즘 개발을 위한 GHP 냉방모드 동특성 모델링 (Dynamics modeling of a GHP in cooling mode for development of control algorithm)

  • 신영기;김영일
    • 설비공학논문집
    • /
    • 제17권3호
    • /
    • pp.243-249
    • /
    • 2005
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump(GHP) for design of control algorithm. The dynamic modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fan, coolant three-way valves and liquid injection valve were PI or P controlled. The simulation results showed physical behavior that is realistic enough to apply for control algorithm design.

무공해 자동차용 수열원 히트펌프 시스템의 난방 성능에 관한 실험적 연구 (An Experimental Study on the Heating Performance of Coolant Heat Source Heat Pump System for Zero Emission Vehicles)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.57-62
    • /
    • 2014
  • This study presented the feasibility of a coolant heat-source heat pump system as an alternative heating system for electrically driven vehicles. Heat pumps are among the most environmentally friendly and efficient heating technologies in residential buildings. In various countries, electric mobiles devices such as EV, PHEV, and FCEV, have been mainly concerned with heat pumps for new mobile markets. The experiments herein were conducted for various ambient temperatures and coolant temperatures to reflect the winter season. The system, a coolant heat-source heat pump, consisted of an inside heat exchanger, an outside heat exchanger, a motor driven compressor, an electronic expansion valve, and plumbing parts. For the experimental results, the maximum heating capacity and air discharge temperature are up to 6.3 kW and $62^{\circ}C$ respectively at an ambient temperature of $10^{\circ}C$, and coolant at $10^{\circ}C$. However, at $-20^{\circ}C$ ambient temperature and $-10^{\circ}C$ coolant temperature, conditions were insufficient to warm the cabin as the air discharge temperature was $13^{\circ}C$.

배기열 회수용 종이 열교환기의 성능예측에 관한 연구 (A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery)

  • 유성연;김진혁;정민호;지명석
    • 설비공학논문집
    • /
    • 제20권6호
    • /
    • pp.372-380
    • /
    • 2008
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used to predict the performance of the paper heat exchanger. Pressure drops at various velocities, and sensible and latent heat transfer rates at various dry-bulb temperatures, relative humidities and specific humidities are measured to derive experimental correlations. The results of prediction using correlations show fairly good agreement with the experimental data obtained in the actual operating conditions.

Effect of Feed Withdrawal and Heat Acclimatization on Stress Responses of Male Broiler and Layer-type Chickens (Gallus gallus domesticus)

  • Mahmoud, Kamel Z.;Yaseen, A.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권10호
    • /
    • pp.1445-1450
    • /
    • 2005
  • This experiment was conducted to evaluate the effect of feed withdrawal (F) and heat acclimatization (A) on malebroiler and -layer chickens responses to acute heat stress (AHS) at four weeks of age. Totals of ninety male chicks of broiler or layer type were randomly allocated into 30 pens of grower batteries with raised wire floors. Chicks were subjected to F and A three times a week through the first three weeks of age. At each time, feed withdrawal and heat acclimatization (T = $35^{\circ}C$) lasted for six and four hours, respectively. Feed consumption (FC), body weight (BW), and feed conversion ratio (FCR) were recorded weekly for broiler type chickens only. At four weeks of age, all groups of chickens were exposed to AHS (T = $39{\pm}1^{\circ}C$) for three hours. Before and after AHS challenge, body temperature (Tb), heterophil (H), and lymphocyte (L) counts were recorded, and H/L ratio was calculated. Antibody (Ab) response to sheep red blood cells (SRBC) was assessed from all treatments without being exposed to AHS. Group F of broiler-type chickens weighed less (p<0.05) compared to control group. Also, both A and F groups of broiler-type chickens consumed less (p<0.05) feed when compared to control group. Acute heat stress elevated Tb of all treatment groups, however the increase was more profound (p<0.001) in broiler chicks. Broiler chicks of both A and F groups showed a tendency to have higher (p = 0.08) Tb when compared to control group. Acute heat stress elevated (p<0.001) H/L ratio in both types of chickens. Broiler chicks maintained higher (p<0.001) H/L ratio. Both F and A groups reduced (p<0.01) the level of elevation in H/L ratio compared to control groups of both types of chickens. Neither A nor F group affected the Ab production in response to SRBC. However, there was a tendency towards higher Ab responses in F group when compared to other groups in both types of chickens. Results of the present study demonstrate that previous history of feed withdrawal or episodes of heat exposures improved chicks'physiological withstanding of AHS and a tendency to improved humoral immune response.

도시열섬 완화를 위한 제도개선 (A Study on the Mitigation Policies for Urban Heat Island)

  • 서응철
    • KIEAE Journal
    • /
    • 제7권2호
    • /
    • pp.17-23
    • /
    • 2007
  • While heat island has been recognized as an unique environmental nuisance in cities, the phenomenon tends to be regarded as an inevitable side effect on urbanization. Recently the nature of the heat island has been disclosed and efforts for the remedy have been discussed in many ways. Some pioneering actions have been taken to mitigate the strength of the heat island's intensity in several countries. After studies for the heat island and speculations on current pilot policies of 3 different countries has been done, mitigation policies for heat island has been suggested as followings. 1. Preservation of natural topography is essential because latent energy consumption(evapotranspiration) from the site is the single most important factor to mitigate the energy surplus caused by urban heat island. 2. Because current national zoning ordinance or building law can not effectively control the site specific local environment, heat island policy should be established or employed at local level. 3. Incentives for the mitigation should be adopted on the process of implementation because environment is public concern. 4. Wind can easily dissipate energy surplus which is the major driving force for heat island. Therefore local wind, the direction and intensity should be sustained and sometimes facilitated fully through policies.

내부발열의 확률적 성상을 고려한 슬래브축냉의 최적제어 (A Study on Optimal Control of Slab Cooling Storage Considering Stochastic Properties of Internal Heat Generation)

  • 정재훈
    • 설비공학논문집
    • /
    • 제27권6호
    • /
    • pp.313-320
    • /
    • 2015
  • In this paper, a method to obtain the probability distribution of room temperature and cooling load is presented, when the internal heat generation is applied to the system as a disturbance in the air conditioning system with slab cooling storage. The probability distribution of room temperature and the cooling load due to the disturbance were examined in one room of an office building. When considering only the electric power consumption as a probability component, it was found that the effect on room temperature and cooling load is small, because the probability component of the measured electric power consumption in the building is small. On the other hand, when considering the stochastic fluctuations of electric power consumption together with the heat generated by human bodies, the mean value of the cooling load was about 2,300 W and the ratio of the standard deviations was 19% (10 o'clock in second day). It was revealed that the stochastic effects of internal heat generation acting on the air conditioning system with slab cooling storage are not small.

전파흡수체용 $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$의 열처리 온도에 따른 Ferrite-Rubber Composite의 전파흡수특성에 관한 연구 (A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$Ferrite-Rubber Composite by Heat-Treatment Temperature of ferrite)

  • 박연준;김동일;이창우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 춘계종합학술대회
    • /
    • pp.109-114
    • /
    • 2000
  • 본 연구에서는 전파흡수체용 ferrite-Rubber Composite에서 Ferrite의 열처리 온도와 Composite의 전파흡수특성과의 상관관계에 관하여 알아보았다. 이때 Ferrite는 스피넬 구조의 형성과 결정입의 비교적 큰 성장을 위하여 1100, 1200, 1300 $^{\circ}C$에서 각각 2시간 열처리 처리하였다. 열처리 온도를 달리하여 제조한 Ferrite-Rubber Composite는 A가 Mn인 경우에는 열처리 온도가 높을수록 반사감쇠량이 작아지는 경향을 보였다. 그러나 A가 Cu와 Mg인 경우 열처리 은도가 높을수록 페라이트의 반사감쇠량이 커지는 경향을 보였다. 이로부터 전파흡수체용 Ferrite는 화학조성에 따라서 적정 열처리 온도가 존재함을 알 수 있었다.

  • PDF

마이크로 평판내 증발에 의한 확장초승달영역의 열/유동특성 (Flow and Heat Transfer Characteristics of the Evaporating Extended Meniscus in a Micro Parallel Plate)

  • 박경우;노관중;이관수
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.476-483
    • /
    • 2003
  • A mathematical model is presented to predict the two-phase flow and heat transfer phenomena of the evaporating extended meniscus region in a micro-channel. The pressure difference at the liquid-vapor interface can be obtained by the augmented Laplace-Young equation. The correlative equations for film thickness, pressure, and velocity in the meniscus region are derived by applying the mass, momentum, and energy equations into the control volume. The results show that increasing the heat flux and the liquid inlet velocity cause the length and liquid film thickness of the extended meniscus region to decrease. The variation, however, of the heat flux and liquid inlet velocity has no effect on the profile of film thickness. The majority of heat is transferred through the thin film region that is a very small region in the extended meniscus region. It is also found that the vapor velocity increases gradually in the meniscus region. However, it increases sharply at the junction of the meniscus and thin film regions.

마이크로 부동액막을 이용한 착상방지에 관한 실험적 연구 (An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreezing Solution)

  • 장영수;윤원남
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.459-467
    • /
    • 2005
  • The effect of anti freezing solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreezing solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation and reduce the thermal resistance across the film. A porous layer coating technique is adopted to improve the wettedness of the anti freezing solution on a parallel plate heat exchanger. The antifreezing solution spreads widely on the heat exchanger surface with 100 $\mu$m thickness by the capillary force resulting from the porous structure. It is observed that the antifreezing solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by thin liquid film are only $1\~2\%$ compared with those for non-liquid film surface.

반도체 클린룸용 배기 열회수식 에어와셔의 에너지 소비량 성능평가 실험 (An Experiment on Performance Evaluation of Energy Consumption of an Exhaust Air Heat Recovery Type Air Washer for Semiconductor Manufacturing Clean Rooms)

  • 송근수;유경훈;신대건;손승우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.844-849
    • /
    • 2008
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from outdoor air introduced into clean room. Meanwhile, there is a large quantity of exhaust air from clean room. From the energy saving point of view, heat recovery is useful for the reduction of air conditioning energy consumption for clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. However, so far there have not been sufficient studies of analyzing the comparison of the amounts of energy consumption and saving. In the present study, an experiment was conducted to investigate the energy consumption and heat recovery of a fin-coil type air washer system for semiconductor manufacturing clean rooms.

  • PDF