• Title/Summary/Keyword: Heat Absorption

Search Result 951, Processing Time 0.027 seconds

Study on Point Defect for $AgGaS_2$ Single Crystal Thin film Obtained by Photoluminescience Measurement Method (광발광 측정법에 의한 $AgGaS_2$ 단결정 박막의 점결함 연구)

  • Hong, Kwang-Joon;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.117-126
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C\;and\;440^{\circ}C$, respectively The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$. After the as-grown $AgGaS_2$, single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag},\;V_s,\;Ag_{int},\;and\;S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaS_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $AgGaS_2$ crystal thin films did not form the native defects because Ga in $AgGaS_2$ single crystal thin films existed in the form of stable bonds.

Properties of Concrete Panel Made by Light Weight Aggregates (인공경량골재로 제조된 콘크리트 패널의 물성)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.221-228
    • /
    • 2004
  • Basic properties of artificial lightweight aggregate by using waste dusts and strength properties of LWA concrete were studied. Bulk specific gravity and water absorption of artificial lightweight aggregates varied from 1.4 to 1.7 and 13 to 16%, respectively. Crushing ratio of artificial lightweight aggregate was above 10% higher than that of crushed stone or gravel. As a result of TCLP leaching test, the leaching amount of tested heavy metal element was below the leaching standard of hazardous material. Slump, compressive strength and stress-strain properties of LWA concrete made of artificial lightweight aggregate were tested. Concrete samples derived from LWA substitution ratio of 30 vol% and W/C ratio of 45 wt% showed the best properties overall. Thermal insulation and sound insulation characteristics of light weight concrete panel with the optimum concrete proportion were tested. Average overall heat transmission of 3.293W/㎡$^{\circ}C$ was observed. It was higher by about 15% than those of normal concrete made by crushed stone. Sound transmission loss of 50.9 ㏈ in frequency of 500 ㎐ was observed. It was higher by about 13% than standard transmission loss.

Effect of Long Period Usage of Polyolefin Film on Growth and Fruit Quality in Korea Melon(Cucumis melo L. var makuwa Makino) (폴리올레핀계 필름 장기사용이 참외의 생육 및 품질에 미치는 영향)

  • Shin, Yong-Seub;Yeon, Il-Kweon;Lee, Ji-Eun;Cheong, Jong-Do;Choi, Seong-Yong;Chung, Doo-Seok
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • This experiment was conducted to investigate the difference among 3-years-used Polyolefin films which were J-1, J-2 and J-3 having differences in film thickness, infrared absorption and ultraviolet penetration from Jan. 16,2006. And 1-year-used Polyethylene film K-1 used from Jan. 16,2008, for covering film of greenhouse for korea melon cultivation. J-2, J-3 and J-1 films were better for keeping heat in order, and J-2 film was the best in plant growth at early stage. The first blooming and harvesting days in J-2 film were earlier 10 days than those in K-1 film. Chromaticity and soluble solid of harvested fruit in J-3, J-1 and J-2 films were higher than those in K-1 film. Marketable yields in J-2, J-1 and J-3 films were higher in order.

Effect of Long Time Usage of Soft Film on the Growth and Yield in Oriental Melon (Cucumis melo L. var makuwa Makino) (연질필름의 장기사용이 참외의 생육 및 수량에 미치는 영향)

  • Shin, Yong-Seub;Yeon, Il-Kweon;Lee, Ji-Eun;Do, Han-Woo;Cheung, Jong-Do;Park, Jong-Wook;Choi, Seong-Yong;Chung, Doo-Seok
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.135-139
    • /
    • 2010
  • This experiment was conducted to investigate the difference among 3-years-used polyolefin films which were J-l, J-2 and J-2 having differences in film thickness, infrared absorption and ultraviolet penetration from Jan. 16, 2006. And 1-year-used polyethylene film K-1 used from Jan. 16, 2009, for covering film of greenhouse for oriental melon cultivation. J-2, J-3 and J-1 films were better for keeping heat in order, and J-2 film was the best in plant growth at early stage. The first blooming and harvesting days in J-2 film were earlier 15 days than those in K-1 film. Chromaticity and soluble solid of harvested fruit in J-2, J-3 and J-1 films were higher than whose in K-1 film. Marketable yields in J-2, J-3 and J-1 films were higher in order.

농업용수의 수온 상승에 관한 연구

  • Hwang, Eun;Kim, Cheol-Gyu;Lee, Sang-Beom
    • Water for future
    • /
    • v.5 no.2
    • /
    • pp.17-29
    • /
    • 1972
  • The persent study aims at finding out a means of prevention cool spell damages on the hilly areas. The irrigation plots of 24 hour stored water warm water way and warm water plots, cool water way are respectively established to find out water temperature and influnce on the growing rice plants. The results obtained are summed up as follows. 1. Warm water areas consisted of $5 m^2 Q=0.93 1{\ell}/sec$, V=31 cm/sec, S=1/1, 000, L=81.6m, B=5cm, h=6cm, t=4min 33sec, drops=9 areas, are constructed to help the water temperature of $14.5^{\circ}C$ rise to that of $21.6^{\circ}C$. This indicates lower temperature than $23^{\circ}C$ of critical water temperature in irrigation facilities by $1.45^{\circ}C$ and than $26.2^{\circ}C$ of balanced water temperature of Seoul arears by $4.6^{\circ}C$. But this does not give much influance on rice plant cultivation. 2. The rising of water temperature is influened according to the temperature, solar radiation but the water temperature changes according to the heat absorption of organized materials, weather and terraces. The difference of water temperature could be found in the first growing stage. 3. Through the warm water way of water rises to the temperature of $21.6^{\circ}C$ which also rises to the temperature of around $30^{\circ}C$ in the paddy field of submerged irrigation. The rice plants are comparatively free from prolonged cool damage, reproduction abstructive damage. 4. The water temperature in rice field in proportion to temperature influence of weather condition but the water temperature approaches to that of weather in the days of later growing stage and water temperature become lower than the air temperature in the fruit stage. 5. The water in the submreged field is $10^{\circ}C$ warmer than in the warm water way during the first growing stage period but the water temperature in the warm water way is warmer in the later growing stage period. The cool water of $14.5^{\circ}C$ is warmed to $30.1^{\circ}C$ and rice plants cultivation is free from other damages. 6. The 12% increased production or 570.98kg/10a is made cool water plot by rising the temperature of water from $14.5^{\circ}C$ to $21.6^{\circ}C$ making the water run through warm water way. 7. The damage inflicted by the cool water irrigation during the first growing stage period is the obstruction of peak tillering stage and the obstruction of heading the later growing stage period and the obstruction of fruiting and number of panides per fill.

  • PDF

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

Hydrophobic Polydimethylsiloxane Thin Films Prepared by Chemical Vapor Deposition: Application in Water Purification (화학적 증기 증착 방법을 통해 제조한 소수성 폴리디메틸실록산 박막: 수처리로의 응용)

  • Han, Sang Wook;Kim, Kwang-Dae;Kim, Ju Hwan;Uhm, Sunghyun;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Polydimethylsiloxane (PDMS) can be deposited on various substrates using chemical vapor deposition process, which results in the formation of PDMS thin films with thickness below 5 nm. PDMS layers can be evenly deposited on surfaces of nanoparticles composed of various chemical compositions such as $SiO_2$, $TiO_2$, ZnO, C, Ni, and NiO, and the PDMS-coated surface becomes completely hydrophobic. These hydrophobic layers are highly resistant towards degradation under acidic and basic environments and UV-exposures. Nanoparticles coated with PDMS can be used in various environmental applications: hydrophobic silica nanoparticles can selectively interact with oil from oil/water mixture, suppressing fast diffusion of spill-oil on water and allowing more facile physical separation of spill-oil from the water. Upon heat-treatments of PDMS-coated $TiO_2$ under vacuum conditions, $TiO_2$ surface becomes completely hydrophilic, accompanying formation oxygen vacancies responsible for visible-light absorption. The post-annealed $PDMS-TiO_2$ shows enhanced photocatalytic activity with respect to the bare $TiO_2$ for decomposition of organic dyes in water under visible light illumination. We show that the simple PDMS-coating process presented here can be useful in a variety of field of environmental science and technology.

Microstructure Evaluation and Wear Resistance Property of Al-Si-X/Al2O3 Composite by the Displacement Reaction in Al-Mg Alloy Melt using High Energy Mechanical Milled Al-SiO2-X Composite Powder (HEMM Al-SiO2-X 복합 분말을 Al-Mg 용탕에서 자발 치환반응으로 제조된 Al-Si-X/Al2O3 복합재료의 조직 및 마멸 특성)

  • Woo, Kee-Do;Kim, Dong-Keon;Lee, Hyun-Bom;Moon, Min-Seok;Ki, Woong;Kwon, Eui-Pyo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.339-346
    • /
    • 2008
  • Single-crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs (100) substrate at $450^{\circ}C$ with a hot wall epitaxy (HWE) system by evaporating a $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structures of the single-crystal thin films were investigated via the photoluminescence (PL) and Double-crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by Varshni's relationship, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T2/(T+489K)$. After the as-grown $ZnIn_2S_4$ single-crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin-of-point defects of the $ZnIn_2S_4$ single-crystal thin films were investigated via the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained from the PL measurements were classified as donor or acceptor types. Additionally, it was concluded that a heat treatment in an S-atmosphere converted $ZnIn_2S_4$ single crystal thin films into optical p-type films. Moreover, it was confirmed that In in $ZnIn_2S_4$/GaAs did not form a native defects, as In in $ZnIn_2S_4$ single-crystal thin films existed in the form of stable bonds.

The Study of Thermal Effect Suppression and Wavelength Dependence of Azobenzene-coated FBG for UV Sensing Application (UV광 측정용 아조벤젠 코팅된 FBG의 열적 효과 제거 및 파장 의존성에 대한 연구)

  • Choi, Dong-Seok;Kim, Hyun-Kyoung;Ahn, Tae-Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.67-71
    • /
    • 2011
  • In the paper, we have demonstrated an azobenzene-coated fiber Bragg grating (FBG) for monitoring ultraviolet light (UV) intensity in remote measurement. The elasticity of the coated azobenzene polymer is changed by the UV light, which induces a center wavelength change corresponding to the change of the FBG's grating period. The wavelength shift resulting from both UV light and other light with the wavelength out of the UV range was about 0.18 nm. In order to improve the accuracy of the measurement, the center wavelength shift caused by radiant heat of the light source was sufficiently removed by using a thermal filter. The amount of the center wavelength shift was consequently reduced to 0.06 nm, compared to the result without the thermal filter. Also, the FBGs coated by using azobenzene polymer were produced by two different methods; thermal casting and UV curing. Considering temperature dependence, UV curing is more suitable than thermal casting in UV sensor application of the azobenzene-coated FBG. In addition, we have confirmed the wavelength dependence of the optical sensor by means of four different band pass filters. Thus, we found out that the center wavelength shift per unit intensity is 0.029 [arb. unit] as a maximum value at 370 nm wavelength region and that the absorption spectrum of the azobenzene polymer was very consistent with the wavelength dependence of the azobenzene-coated FBG.

Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

  • de Wit, J.H.W.;van den Brand, J.;de Wit, F.M.;Mol, J.M.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.50-60
    • /
    • 2008
  • The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. In addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond with the epoxy coating. Two routes for improvement of adhesion are finally decribed including an interphasial polymeric thin layer and a treatment in boiling water of the substrate before coating takes place. The adhesion properties were finely also studied as a function of the Mg content of the alloys. It was shown that an enrichment of Mg in the oxide could take place when Mg containing alloys are heat-treated. It is expected that for these alloys the (hydr)oxide fraction also depends on the pre-treatment and on the distribution of magnesium as compared to the aluminium hydroxides, with a direct impact on adhesive properties.