• 제목/요약/키워드: Heat & Mass Balance

검색결과 123건 처리시간 0.028초

3 MWth 급 매체순환연소 시스템의 운전변수 변화에 따른 성능 예측 (Performance Prediction of 3 MWth Chemical Looping Combustion System with Change of Operating Variables)

  • 류호정;남형석;황병욱;김하나;원유섭;김대욱;김동원;이규화;전명훈;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.419-429
    • /
    • 2022
  • Effects of operating variables on temperature profile and performance of 3 MWth chemical looping combustion system were estimated by mass and energy balance analysis based on configuration and dimension of the system determined by design tool. Air reactor gas velocity, fuel reactor gas velocity, solid circulation rate, and solid input percentage to fluidized bed heat exchanger were considered as representative operating variables. Overall heat output and oxygen concentration in the exhaust gas from the air reactor increased but temperature difference decreased as air reactor gas velocity increased. Overall heat output, required solid circulation rate, and temperature difference increased as fuel reactor gas velocity increased. However, overall heat output and temperature difference decreased as solid circulation rate increased. Temperature difference decreased as solid circulation rate through the fluidized bed heat exchanger increased. Effect of each variables on temperature profile and performance can be determined and these results will be helpful to determine operating range of each variable.

이상 회체가스 가중합산모델을 적용한 미분탄 연소의 수치적 연구 (Numerical Study on Pulverized Coal Combustion Applying Two-Phase WSGGM)

  • 유명종;강신재;백승욱
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1368-1379
    • /
    • 2000
  • A numerical study on swirling pulverized coal combustion in an axisymmetric enclosure is carried out by applying the 2-phase weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard and RNG k-${\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase. The eddy-dissipation model is employed for the reaction rate for gaseous mixture, and the single-step and two-step first-order reaction model for the devolatilization process for coal. Special attention is given to establish the thermal boundary conditions on radiative transfer equation By comparing the numerical results with experimental ones, the radiation model used here is confirmed and found to provide an alternative for simulating the radiative transfer.

수정된 화학증착공정에서 다종 성분 입자 생성 및 성장 해석 (An Analysis of Generation and Growth of Multicomponent Particles in the Modified Chemical Vapor Deposition)

  • 이방원;박경순;최만수
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.670-677
    • /
    • 1999
  • An analysis of generation and growth of multicomponent particles has been carried out to predict the size and composition distributions of particles generated in the Modified Chemical Vapor Deposition(MCVD) process. In MCVD process. scale-up of sintering and micro-control of refractive index may need the Information about the size and composition distributions of $SiO_2-GeO_2$ particles that are generated and deposited. The present work solved coupled steady equations (axi-symmetric two dimensions) for mass conservation, momentum balance. energy and species(such as $SiCl_4$, $GeCl_4$, $O_2$, $Cl_2$) conservations describing fluid flow. heat and mass transfer in a tube. Sectional method has been applied to obtain multi-modal distributions of multicomponent aerosols which vary in both radial and axial directions. Chemical reactions of $SiCl_4$ and $GeCl_4$ were included and the effects of variable properties have also been considered.

Numerical Study for the Performance Analysis and Design of a Crossflow- Type Forced Draft Cooling Tower

  • Choi, Young-Ki;Kim, Byung-Jo;Lee, Sang-Yun;Lee, Jung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권1호
    • /
    • pp.1-13
    • /
    • 2000
  • A numerical study for performance analysis of a crossflow-type forced draft cooling tower has been performed based on the finite volume method with non-orthogonal body fitted, and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy, moisture fraction, water enthalpy, and water mass balance equations are solved with Navier-Stoke's equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study. The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also performed.

  • PDF

TIRE-LII 기법을 이용한 매연 입자 크기에 관한 수치적 연구 (Numerical Investigation on Soot Primary Particle Size Using Time Resolved Laser Induced Incandescence (TIRE-LII))

  • 김정용;이종호;정동수;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1152-1157
    • /
    • 2004
  • Temporal behavior of the laser induced incandescence (LII) signal is often used for soot particle sizing, which is possible because the cooling behavior of a laser heated particle is dependent on the particle size. In present study, LII signals of soot particles are modeled using two non-linear coupled differential equations deduced from the energy- and mass-balance of the process. The objective of this study is to see the effects of particle size, laser fluence on soot temperature characteristics and cooling behavior. Together with this, we focus on validating our simulation code by comparing with other previous results. Results of normalized LII signals obtained from various laser fluence conditions showed a good agreement with that of Dalzell and Sarofim's. It could be found that small particles cool faster at a constant laser fluence. And it also could be observed that vaporization is dominant process of heat loss during first 100ns after laser pulse, then heat conduction played most important role while thermal radiation had little influence all the time.

  • PDF

자연 순환식보일러의 퍼지제어 모사기 개발에 관한 연구 (A Study on Fuzzy Control Simulator of Naturally Circulated Boiler)

  • 김광선;김삼운
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.543-554
    • /
    • 2000
  • The engineering equations, which have been used in many engineering companies, were employed for the dynamic modelling part in order to develop the naturally circulated boiler simulator. The fuzzy algorithm, which is similar to the algorithm of making decision by the human being, was developed for the boiler simulator controller and its simulated variables were compared with those of classical PID simulations to verify the stability and the effectiveness of fuzzy controller. The simulator is for the naturally circulated boiler and the main components are the furnace, the drum, the super heater, and the economizer. The combustion and thermal radiation dominant equations were used within the furnace and the mass conservation and the energy rate balance equations were employed for the drum part. The heat transfer rates were calculated using the logarithmic mean temperature differences both for the super heater and for the economizer. The simulations are very useful to understand the boiler operations and the engineering design of the main components. The main program was developed under the PC window condition by linking the fuzzy controller to the main boiler program using the Visual C++ language. The various operational conditions such as the abrupt changes of load, the changes of water supply pipes and the diameter of drum were simulated.

CO2 포집을 고려한 가스터빈 복합화력 발전 플랜트의 시스템 대안 평가를 위한 공학 설계 (Engineering design procedure for gas turbine combined cycle power plant with post-combustion CO2 capture)

  • 이수현;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.333-335
    • /
    • 2014
  • As the user demand for power plants becomes various, design objective becomes complicated. To review the system feasibility, system objective and evaluation criteria need to be newly defined. In this study, engineering design procedure of the multi-purpose power plant, such as barge-mounted combined cycle power plant with $CO_2$ capture, was shown as a previous work for the feasibility review of the system alternatives. For the system design, heat and mass balance for each system configuration was firstly performed. Using the thermal analysis results, conceptual design of system alternatives was carried out. And then, preliminary design of the major equipment was done. The engineering calculation results of this study would be used as the evaluation data for system feasibility review.

  • PDF

수경온실의 양액 냉각부하 예측모델 개발 (Development of a Numerical Model for Prediction of the Cooling Load of Nutrient Solution in Hydroponic Greenhouse)

  • 남상운;김문기;손정익
    • 생물환경조절학회지
    • /
    • 제2권2호
    • /
    • pp.99-109
    • /
    • 1993
  • Cooling of nutrient solution is essential to improve the growth environment of crops in hydroponic culture during summer season in Korea. This study was carried out to provide fundamental data for development of the cooling system satisfying the required cooling load of nutrient solution in hydroponic greenhouse. A numerical model for prediction of the cooling load of nutrient solution in hydroponic greenhouse was developed, and the results by the model showed good agreements with those by experiments. Main factors effecting on cooling load were solar radiation and air temperature in weather data, and conductivity of planting board and area ratio of bed to floor in greenhouse parameters. Using the model developed, the design cooling load of nutrient solution in hydroponic greenhouse of 1,000$m^2$(300pyong) was predicted to be 95,000 kJ/hr in Suwon and the vicinity.

  • PDF

화력발전 시스템 및 설비 개선 실증을 위한 열물질정산 공정모델 개발 (Process Modeling of the Coal-firing Power Plant as a Testbed for the Improvement of the System and Equipment)

  • 안형준;최석천;이영재;김범수
    • 한국연소학회지
    • /
    • 제23권1호
    • /
    • pp.44-54
    • /
    • 2018
  • Heat and mass balance process modeling has been conducted for a coal-firing power plant to be used as a testbed facility for development of various plant systems and equipment. As the material and design of the boiler tube bundle and fuel conversion to the biomass have become major concerns, the process modeling is required to incorporate those features in its calculation. The simulation cases for two different generation load show the satisfying results compared to the operational data from the actual system. Based on the established process conditions, the hypothetical case using wood pellet has also been simulated. Additional calculations for the tube bundle has been conducted regarding the changes in the tube material and design.

가스화 용융로의 운전성능 예측기법에 관한 연구 (A Study of Operation Performance Prediction Method for the Gasification Melting Furnace)

  • 이민도;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.43-49
    • /
    • 2005
  • Social interest and request about low pollution waste treatment process are growing and gasification melting method, as a new technology concept, is risen. The necessity of engineering analysis to determine design standards and operation condition is required. In this study, the objective and function of components and operation process of various gasification melting furnaces such as shaft type, fluidized bed and Rotary Kiln type gasification melting furnace are reviewed and the design standard and operation range of gasification melting furnace are determined by inspecting the change of output and operation condition with input condition change.

  • PDF