• Title/Summary/Keyword: Heat & Mass Balance

Search Result 123, Processing Time 0.034 seconds

Modeling of a Pulverized Coal Combustion With Applying WSGGM (희체가스 가중합산모델을 적용한 미분탄 연소의 해석)

  • Yu, Myoung-Jong;Baek, Seung-Wook
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.155-163
    • /
    • 1999
  • A numerical study for simulating a swirling pulverized coal combustion in axisymmetric geometry is done here by applying the weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard ${\kappa}-{\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase for soot. The eddydissipation model is employed for the reaction rate for gaseous mixture, and the single-step first-order reaction model for the devolatilization process for coal. By comparing the numerical results with experimental ones, the models used here are confirmed and found to be one of good alternatives for simulating the combustion as well as radiative characteristics.

  • PDF

Post-operating Techniques for Non-toping Vulconization Process of Electric Cable Sheath in Autoclave (Autoclave를 이용한 전선피복용 고무의 무테이핑 가황공정시 후처리 운전기술)

  • Kim, Duk-Joon;Choi, Sang-Soon;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.103-109
    • /
    • 1998
  • The determination method of successful operation conditions to control the temperature and pressure in autoclave after non-taping vulcanization process was represented. Heat and mass balances were constructed to predict the mass flow rates of air, steam, and condensed water into or from autoclave when the temperature and pressure in the autoclave were to be controlled in the desired profiles. The balance equations were solved by appropriate mathematics, and the solution was applied to an autoclave system where the temperature and pressure were linearly decreased. The resulting solutions were illustrated in graphs.

  • PDF

A Study on Flow Characteristics of Ejector for Cyclone Air Drying Machine (사이클론 건조기용 이젝터 유동 특성에 관한 연구)

  • Kim, Bong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.189-194
    • /
    • 2012
  • The purpose of this study is to predict the performance of a cyclone drying machine and air ejector used in drying applications. This paper deals with optimization of the geometry of the ejector for sludge drying using computational fluid dynamics. To facilitate the design of a jet ejector for air drying machines, a numerical model of simultaneous mass and heat transfers between the liquid(sludge) and gas(air) phases in the jet ejector was developed. The steady-state model was based on unidimensional balance equations of mass, energy and momentum for the liquid and gas phases. It was shown that the optimum condition to minimize pressure and momentum loss of air in the ejector was d=220mm. It was found that sludge particles inside the cyclone was smoothly discharged by the conical wedge installed on the bottom of the cyclone.

Experiment of Natural Circulation Loop Using a Cryocooler (극저온냉동기를 이용한 자연순환 루프의 실험)

  • Kim, M.J.;Chang, H.M.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2194-2199
    • /
    • 2007
  • An experimental study is performed to investigate the thermal and flow characteristics of subcooled liquid nitrogen in a natural circulation loop. Experimental apparatus is designed and constructed such that a closed loop is cooled at the top by a cryocooler and heated nearly at the bottom by cartridge heaters. Steady state is obtained by controlling the heating power to the cartridge heaters and a thin-film heater to reduce the cooling power of the cryocooler. Temperature is measured at several locations of the loop and the mass flow rate through the loop is estimated from the energy balance in terms of the measured temperatures. Experiment is repeated for various values of the vertical height between the cooling and heating parts. The results show that the heat transfer capability of the loop has a maximum at a certain value of height. The optimal height to maximize the heat transfer is in a good agreement with analytical prediction to take into account the buoyancy and viscous forces in the loop.

  • PDF

Performance Evaluation of a Flash Dryer and a Rotary Kiln Dryer for Upgrading Low Rank Coal (석탄의 고품위화를 위한 기류건조기와 로터리킬른 건조기의 성능 비교평가)

  • Eom, Taegyu;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.1-13
    • /
    • 2015
  • Drying, which is the oldest and most energy-intensive process, is an essential process for treatment of solid product. The specific procedure to design and evaluate the dryers, which are a rotary kiln dryer and a flash dryer, in case of drying the high-moisture coal was described. From determination of size to the heat and mass balance in one-dimensional model were conducted to evaluate the performance of dryers. Heat consumption, inlet gas temperature and size of the dryers were compared between a rotary kiln dryer and a flash dryer. Further considerations to evaluate the reactor elaborately were also discussed. Performance simulation of dryers along with the design procedure described here will provide helpful basis for understanding the concept of reactor design.

A Development of Design System Program for the 3-pass rotary dryer (3단 회전식 건조성형장치 설계 프로그램 개발)

  • Kim, T.S.;Choi, Y.H.;Doh, D.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.36-40
    • /
    • 2006
  • In order to prevent the environmental pollution, the dryers are commonly used to treat sludge that one of sewages is polluting the quality of water. Generally, the drying method is various as to the property of material and use. Rotary dryer is a good apparatus to treat them. It is the way that is to make substance transmission and heat using hot air between sludge particle and heated gas. In this paper, we developed a 3-pass rotary dryer for a design program for the 3-pass rotary dryer with various conditions. The working conditions of dryer are a raw sludge feed rate, input & output water content and operation time etc.

  • PDF

Theoretical Calculation of Parabolic Rate Constant for High-Temperature Oxidation of Metals (금속의 고온 산화동안 포물선 속도상수의 이론적 계산)

  • Kim, Insoo;Cho, Weol Dong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.282-285
    • /
    • 2001
  • Based on the mass balance of anion and cation fluxes, the parabolic rate constant ($K_p$) of oxide grown during the high-temperature oxidation of metal is theoretically calculated. It is assumed that the diffusion of oxygen anion and metal cation through oxide scale obeys the Fick's 1st law, the growth of oxide is controlled by the diffusion of ions, electrical potential gradient as driving force for diffusion of ions is ignored, and oxidation occurs within an existing oxide layer. Then, the parabolic rate constant can be expressed by $K_p=[2{\rho}_{MmOn}{M^2}_{MmOn}(mD_oC_o{^e}+nD_MC_M{^e})/nm]$.

  • PDF

Analysis of Thermodynamic Design Data of Double-Effect Absorption System for Heating using LiCl-water for Evaporator Heating Source of Solar Energy (흡수식 2중효용 시스템의 증발기 열원으로 태양열을 이용하는 LiCl 수용액 난방시스템 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, thermodynamic design data for heating of double-effect absorption system using LiCl-water for evaporator heating source of sofar energy are investigated for the water-LiCl pair and a comparative study of the water-LiCl pair with the water-LiBr pair is given used for the computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water -LiCl pair than for the water-LiBr pair, and FR is lower for the water-LiCl pair than for the water LiBr pair.

A Study on the Natural Evaporation Capacity of LPG Container (액화석유가스 용기의 자연 증발량에 관한 연구)

  • Jo Young-Do;Kim Ji-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.22-29
    • /
    • 2001
  • The number of gas containers and the period of exchanging gas containers are vsy important in designing liquefied petroleum gas(LPG) supply system for small capacity domain. And also the evaluation of remaining LPG in containers to be exchanged is very useful information in commerce. However seldon has been studied on calculating method about those with respect to gas consumption pattern. In this study, a simulation method was developed to estimate the evaporation capacity of LPG container, the mass gas flow rate from LPG container, the temperature and vapor pressure of LPG, and the remained LPG at containers to be exchange by using LPG property equations, mass balance equation, and heat balance equation. The simulation results were correlated well with experimental data. The overall heat transfer coefficient from air to LPG is approximately $9{\~}13 kcal/m^2{\cdot}hr{\cdot}^{\circ}C$ and does not strongly affect on the evaporation capacity of LPG container. The mass gas flow rate from LPG container is constant when the vapor pressure of LPG is within pressure regulator's control range. While, out of range, it suddenly reduce to a evaporation rate which is balanced with heat transfer from air. The evaporation capacity of LPG container increased with surrounding temperature and the composition of propane, and decreased drastically with continuous gas consumption. The number of gas containers divided the number of houses using gas supply system was reduced by using automatic gas feeding device.

  • PDF

Effects of Humidity and Velocity on Frost Distribution Characteristics of Humid Air Flow on Cold Surfaces (차가운 표면위에서의 습공기 유동의 습도 및 속도가 착상분포 특성에 미치는 영향)

  • Kwon Jeong-Tae;Rew Keun-Ho;Lim Hyo-Jae;Han Ji-Won;Kwon Young Chul
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.213-218
    • /
    • 2005
  • In order to understand the heat and mass transfer characteristics of humid airflow in frosting conditions, a flat plate of aluminum with cooling modules located in the central part of the plate was used. A microscope system (resolution of 0.05 mm) was used for the measurement of local thickness of frost at seven points along the plate in the flow direction. For the total mass of frost at each test operation, an electronic balance (resolution of 1 mg) was used. The local frost thickness distributions far various test conditions were presented along with the frost mass data measured at the given operating times. The effect of humidity and velocity of humid air on frosting were analyzed.