• Title/Summary/Keyword: Heat/mass transfer

Search Result 1,299, Processing Time 0.027 seconds

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture (3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성)

  • Shuai Wang;Jeong Hyeon Hong;Jong Kyun You;Yeon Ki Hong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.555-560
    • /
    • 2023
  • Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.

Prediction of Pressurant Mass Requirement for Propellant Tank with Operating Condition Variation (운용조건 변화에 따른 추진제탱크 가압가스 요구량 예측)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.54-62
    • /
    • 2011
  • The pressurant mass required for propellant tank pressurization with operating condition variation was estimated by using the numerical model already developed for this purpose. The model was applied to the concept design results of KSLV-II first stage oxygen tank. The supplied pressurant temperature, oxygen volumetric flow rate, and the ratio of length to diameter of the tank were selected as variables. The required pressurant mass and mass flow rate, collapse factor, ullage temperature distribution were predicted, and the results showed that the pressurant temperature had the largest effect on the amount of the required pressurant mass. The pressurizing efficiency of the propellant tank was calculated through analyzing energy distribution in the ullage. It was found that the gas-to-wall heat transfer in the ullage was dominant, and much of the pressurant energy was lost to tank wall heating.

Investigation of Optimal Construction Procedures for Concrete Underpass Structures Considering Heat of Hydration (수화열을 고려한 콘크리트 지하차도 적정 시공법 분석)

  • An, Zu-Og;Kim, Seong-Min;Kim, Dong-Ryun
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.229-238
    • /
    • 2009
  • This paper describes the methods to propose the optimal material properties and construction steps that prevent cracks due to the thermal stresses induced by the hydration heat under the construction of the concrete underpass structures. To achieve the goal of this study, the heat transfer theories were employed and the three-dimensional finite element model of the underpass structure was developed and used for the structural analyses. If the volume of the concrete member that is placed at one time is significantly large, the member is assumed to be the mass concrete and is easy to induce cracks. In order to minimize the cracks during the construction, two different methods can be utilized: one is to arrange the construction steps optimally and the other is to change the materials to reduce the probability of the crack occurrence. In this study, the analyses were performed by considering the changes in material properties with time, the characteristics of the hydration heat generation for cements and admixtures, the volume of the concrete placement at one time, and the environmental conditions.

  • PDF

Effects of Clothing Material Dyed with Astringent Persimmon Extract upon Exercise-Induced Thermal Strain and Sensory Responses in a Warm Environment

  • Park, Shin-Jung;Shin, Hye-Sun;Chung, Hee-Chung
    • International Journal of Human Ecology
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • This study investigated the effects of persimmon-dyed clothing materials upon thermophysiological responses and subjective comfort sensations during exercise and rest in a warm environment. Six healthy, untrained women participated in two separate testing sessions, with cotton materials dyed with astringent persimmon extract (DC) and undyed cotton materials (UDC). The physical characteristics associated with heat and moisture transfer were improved in DC; also, stiffness, anti-drapery stiffness and crispness in the primary hand values were higher in DC. The experimental protocol consisted of a 10-min rest, 15-min exercise on a treadmill (at ${7km{\cdot}h^{-1}}$) and 25-min recovery at $28{\pm}0.2^{\circ}C$ and $50{\pm}3%\;RH$. The results were as follows: When wearing DC rather than UDC, mean body temperature, heart rate, heat storage and body mass loss were significantly lower during the whole experimental period. Clothing microclimate temperature showed different profiles between the two clothing materials, being lower with DC than UDC during the first half of exercise and the second half of recovery. Clothing microclimate humidity was significantly lower with DC than UDC during the whole experimental period. When wearing UDC, subjects felt significantly warmer and less comfortable during exercise, and sensed greater humidity during exercise and recovery. These results suggest that eco-friendly clothing materials dyed with astringent persimmon extract can reduce exercise-induced heat load and improve subjective sensations when exercising and resting in a warm environment, due to greater heat dissipation from the body to the outside environment compared with undyed clothing materials.

The Study of the Printability on the Phenol Free Heat-Set Web Inks(III) - Effects of the Emulsification of Ink on Print Quality - (Phenol Free Heat-Set 윤전 잉크의 인쇄적성에 관한 연구 (제3보) - 잉크 유화가 인쇄품질에 미치는 영향 -)

  • Ha, Young-Baeck;Oh, Sung-Sang;Lee, Won-Jae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • The lithographic process depends on a satisfactory ink-in-water emulsion being formed during printing and the speed of wet presses makes the choice of fountain solution vitally important as the ink and fount must react quickly to form a stable emulsion. Ink and water come into contact with each other on the rolls of the press and are forced together in the roll nips. The water is not soluble in the ink since it is slightly fat. Instead, an emulsion is formed, a heterogeneous mass consisting of small water drops mixed into the ink, if the water feed is too great. This emulsification can affect the properties of an off-set ink and negatively affect the printability. So we investigated the effects of the emulsification of phenol free heat-set ink and existing heat-set ink on printed quality, such as amount of ink transfer, printed density, print-through and uniformity. We used Duke emulsification tester for the emulsification of inks, and used IGT printability tester for printed quality. The printed quality were measured by densitometer and were evaluated by the image analysis system. Compared to conventional printing ink, phenol-free ink showed better results of the printability at the emulsification.

A study on the friction head loss in flat aluminum micro multi tubes with nonazeotropic refrigerant mixtures R-410A (비공비 혼합냉매 R-410A를 적용한 납작한 알루미늄 마이크로 멀티 튜브에서의 마찰손실에 관한 연구)

  • Lee, Jeong-Kun;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer friction loss headby using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat enhancement factor and pressure drop penalty factor. 1) The friction head loss showed an increase as the vapor quality and mass flux increased. In case of saturation temperature, it shows an increase as it gets lower. These factors are the reason occurring as the lower the saturation temperature is, the higher the density of refrigerant vapor gets. The influence of heat flux is similar as the dryness is low, but as it gets higher, it lowers in heat flux, and as the high temperature of high heat flux, it is a factor that occurs as the density gets lower. 2) RMS error of the in case of friction head loss, it showed to be predicted as 0.45~0.67 by Chisholm, Friedel, Lockhart and Martinelli. 3) As forfriction head loss penalty factor, the smaller the aspect ratio is, the larger the penalty factor gets, and as for the effect of micro-fin, the penalty factor increased because it decreases to the gas fluid the way groove for the refrigerant's flow.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

Experimental Study on Inward Melting of Phase Change Material in Inclined Circular Tube (경사진 원통형 용기내에서 상변화 물질의 내향 용융에 관한 실험적 연구)

  • Yim, Chang-Soon;Son, Ha-Jin
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.48-58
    • /
    • 1992
  • In the present investigation, experimental analysis was performed to research heat transfer phenomena generated by means of conduction and natural convection at a succession of tube-inclimations relative to the vertical tube during inward melting process of a phase change material. The phase change material used in the experiments is 99 percent pure n-docosane paraffin($C_{22}H_{46}$). When the tube is vertical, the dominant mode of energy transfer between the tube wall and the melting interface is natural convection. On the other hand, when the tube is inclined to the vertical, the melting solid is brought into direct contact with the tube wall by the action of gravity. In the experimental results, direct contact gave rise to substantial enhancements in the amount of melted mass, relative to those for natural-convection-dominated melting.

  • PDF

A Prediction of VOCs Emission Rate with Temperature Variation in Floor Heating Space by Numerical Analysis (수치해석에 의한 바닥난방공간의 온도변화에 따른 VOCs 방출속도 예측)

  • Kang, Dong-Hwa;Choi, Dong-Hee;Kim, Sun-Sook;Kim, Young-Don;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.468-476
    • /
    • 2006
  • The paper deals with the numerical analysis of contaminants emission from the material affected by temperature variation in floor heating system. Considering mass transfer and heat transfer theories, a computer program for the analysis of VOCs emission was made. To demonstrate the accuracy of the numerical solution, the prediction results and the measured data were compared. Using this program, emission rates of the materials in the bakeout space and the no bake-out space were compared to estimate the variation of emission rate.