• Title/Summary/Keyword: Heart-rate accuracy

Search Result 125, Processing Time 0.032 seconds

Real-Time Heart Rate Monitoring System based on Ring-Type Pulse Oximeter Sensor

  • Park, Seung-Min;Kim, Jun-Yeup;Ko, Kwang-Eun;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.376-384
    • /
    • 2013
  • With the continuous aging of the populations in developed countries, the medical requirements of the aged are expected to increase. In this paper, a ring-type pulse oximeter finger sensor and a 24-hour ambulatory heart rate monitoring system for the aged are presented. We also demonstrate the feasibility of extracting accurate heart rate variability measurements from photoelectric plethysmography signals gathered using a ring-type pulse oximeter sensor attached to the finger. We designed the heart rate sensor using a CPU with built-in ZigBee stack for simplicity and low power consumption. We also analyzed the various distorted signals caused by motion artifacts using a FFT, and designed an algorithm using a least squares estimator to calibrate the signals for better accuracy.

Development and Verification of the System for Heart Rate Detection During Exercise (운동 중 심박수 검출 시스템 개발 및 검증)

  • Jeon, Young-Ju;Shin, Seung-Chul;Jang, Yong-Won;Kim, Seung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1688-1693
    • /
    • 2007
  • The aim of this paper is to develop and verify the system which can detect heart rate during exercise by using conductive fabric electrode and transportable measurement module. The experiment was performed under 4 conditions(resting, walking, jogging, running) and 18 subjects data are used. By using the ECG measurement system used in cardiac stress testing as reference value in order to verify the accuracy of the developed system, the relative error and correlation coefficient was calculated for each subject at every 3 seconds. The results have shown that the high correlation between the developed system and the reference system for detecting heart rate during exercise. Relative error and correlation coefficient are 2.27% and 0.9877, respectively. 7 subjects data are omitted in these calculations because of severe noises. Therefore, it is expected that this system could be used as a health monitoring system in ubiquitous environment in the future.

Automatic Detection of Congestive Heart Failure and Atrial Fibrillation with Short RR Interval Time Series

  • Yoon, Kwon-Ha;Nam, Yunyoung;Thap, Tharoeun;Jeong, Changwon;Kim, Nam Ho;Ko, Joem Seok;Noh, Se-Eung;Lee, Jinseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.346-355
    • /
    • 2017
  • Atrial fibrillation (AF) and Congestive heart failure (CHF) are increasingly widespread, costly, deadly diseases and are associated with significant morbidity and mortality. In this study, we analyzed three statistical methods for automatic detection of AF and CHF based on the randomness, variability and complexity of the heart beat interval, which is RRI time series. Specifically, we used short RRI time series with 16 beats and employed the normalized root mean square of successive RR differences (RMSSD), the sample entropy and the Shannon entropy. The detection performance was analyzed using four large well documented databases, namely the MIT-BIH Atrial fibrillation (n=23), the MIT-BIH Normal Sinus Rhythm (n=18), the BIDMC Congestive Heart Failure (n=13) and the Congestive Heart Failure RRI databases (n=25). Using thresholds by Receiver Operating Characteristic (ROC) curves, we found that the normalized RMSSD provided the highest accuracy. The overall sensitivity, specificity and accuracy for AF and CHF were 0.8649, 0.9331 and 0.9104, respectively. Regarding CHF detection, the detection rate of CHF (NYHA III-IV) was 0.9113 while CHF (NYHA I-II) was 0.7312, which shows that the detection rate of CHF with higher severity is higher than that of CHF with lower severity. For the clinical 24 hour data (n=42), the overall sensitivity, specificity and accuracy for AF and CHF were 0.8809, 0.9406 and 0.9108, respectively, using normalized RMSSD.

산소 공급에 따른 언어 인지 능력, 혈중 산소 농도, 심박동율의 변화

  • 황정화;정순철;손진훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.300-300
    • /
    • 2004
  • 본 연구에서는 언어과제 수행 시 일반 공기 중의 산소 농도 (21%) 환경에 비해 외부에서 고 농도 (30%)의 산소 공급이 혈중 산소 포화도(SPO$_2$), 심박동율(Heart Rate), 정답률(Accuracy), 반응속도(Reaction Time)에 어떠한 영향을 미치는지를 검증하고자 한다. 30%와 21%의 산소를 8L/min의 양으로 일정하게 공급할 수 있는 산소 공급 장치를 이용하였고, 10명의 대학생(오른손잡이, 평균나이 23.4세)을 대상으로 실험을 수행하였다. 난이도가 비슷한 두 가지 언어과제를 28문제씩 피험자에게 풀게하여 정답률과 반응속도를 계산하였다.(중략)

  • PDF

A Method of Analyzing ECG to Diagnose Heart Abnormality utilizing SVM and DWT

  • Shdefat, Ahmed;Joo, Moonil;Kim, Heecheol
    • Journal of Multimedia Information System
    • /
    • v.3 no.2
    • /
    • pp.35-42
    • /
    • 2016
  • Electrocardiogram (ECG) signal gives a clear indication whether the heart is at a healthy status or not as the early notification of a cardiac problem in the heart could save the patient's life. Several methods were launched to clarify how to diagnose the abnormality over the ECG signal waves. However, some of them face the problem of lack of accuracy at diagnosis phase of their work. In this research, we present an accurate and successive method for the diagnosis of abnormality through Discrete Wavelet Transform (DWT), QRS complex detection and Support Vector Machines (SVM) classification with overall accuracy rate 95.26%. DWT Refers to sampling any kind of discrete wavelet transform, while SVM is known as a model with related learning algorithm, which is based on supervised learning that perform regression analysis and classification over the data sample. We have tested the ECG signals for 10 patients from different file formats collected from PhysioNet database to observe accuracy level for each patient who needs ECG data to be processed. The results will be presented, in terms of accuracy that ranged from 92.1% to 97.6% and diagnosis status that is classified as either normal or abnormal factors.

Real-time Heart Rate Measurement based on Photoplethysmography using Android Smartphone Camera

  • Hoan, Nguyen Viet;Park, Jin-Hyeok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.234-243
    • /
    • 2017
  • With the development of smartphone technologies enable photoplethysmogram (PPG) acquisition by camera and heart rate (HR) measurement. This papers presents improved algorithm to extract HR from PPG signal recorded by smartphone camera and to develop real-time PPG signal processing Android application. 400 video samples recorded by Samsung smartphone camera are imported as input data for further processing and evaluating algorithm on MATLAB. An optimized algorithm is developed and tested on Android platform with different kind of Samsung smartphones. To assess algorithm's performance, medical device Beurer BC08 is used as reference. According to related works, accuracy parameters includes 90% number of samples that has relative errors less than 5%, Person correlation (r) more than 0.9, and standard estimated error (SEE) less than 5 beats-per-minutes (bpm).

Heart rate monitoring and predictability of diabetes using ballistocardiogram(pilot study) (심탄도를 이용한 연속적인 심박수 모니터링 및 당뇨 예측 가능성 연구(파일럿연구))

  • Choi, Sang-Ki;Lee, Geo-Lyong
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.231-242
    • /
    • 2020
  • The thesis presents a system that continuously collects the human body's physiological vital information at rest with sensors and ICT information technology and predicts diabetes using the collected information. it shows the artificial neural network machine learning method and essential basic variable values. The study method analyzed the correlation between heart rate measurements of BCG and ECG sensors in 20 DM- and 15 DM+ subjects. Artificial Neural Network (ANN) machine learning program was used to predictability of diabetes. The input variables are time domain information of HRV, heart rate, heart rate variability, respiration rate, stroke volume, minimum blood pressure, highest blood pressure, age, and sex. ANN machine learning prediction accuracy is 99.53%. Thesis needs continuous research such as diabetic prediction model by BMI information, predicting cardiac dysfunction, and sleep disorder analysis model using ANN machine learning.

Random Forest Based Abnormal ECG Dichotomization using Linear and Nonlinear Feature Extraction (선형-비선형 특징추출에 의한 비정상 심전도 신호의 랜덤포레스트 기반 분류)

  • Kim, Hye-Jin;Kim, Byeong-Nam;Jang, Won-Seuk;Yoo, Sun-K.
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.61-67
    • /
    • 2016
  • This paper presented a method for random forest based the arrhythmia classification using both heart rate (HR) and heart rate variability (HRV) features. We analyzed the MIT-BIH arrhythmia database which contains half-hour ECG recorded from 48 subjects. This study included not only the linear features but also non-linear features for the improvement of classification performance. We classified abnormal ECG using mean_NN (mean of heart rate), SD1/SD2 (geometrical feature of poincare HRV plot), SE (spectral entropy), pNN100 (percentage of a heart rate longer than 100 ms) affecting accurate classification among combined of linear and nonlinear features. We compared our proposed method with Neural Networks to evaluate the accuracy of the algorithm. When we used the features extracted from the HRV as an input variable for classifier, random forest used only the most contributed variable for classification unlike the neural networks. The characteristics of random forest enable the dimensionality reduction of the input variables, increase a efficiency of classifier and can be obtained faster, 11.1% higher accuracy than the neural networks.

Implementation and analysis of biometric information measurement method based on image processing (영상처리 기반 생체 정보 측정 방법 구현 및 분석)

  • Park, Tae-young;Bang, Seungcheol;Zhang, Junjun;Noh, Giseop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.37-39
    • /
    • 2022
  • As the COVID-19 pandemic hits the world, the Tokyo Olympics in 2021 will be held behind closed doors. Some broadcasters showed the heart rate of the players in real time using image processing-based non-contact measurement to convey the vividness of the scene on TV. However, since the non-contact model uses changes in the skin color of the players' faces according to blood circulation as a parameter, there is a possibility that errors may occur due to interference factors such as natural light or glasses. Therefore, in this paper, the non-contact heart rate measurement model and the contact heart rate measurement model are tested in an environment free from interference and their accuracy is analyzed.

  • PDF

Heart Rate Signal Extraction by Using Finger vein Recognition System (지정맥 인식 시스템을 이용한 심박신호 검출)

  • Bok, Jin Yeong;Suh, Kun Ha;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.701-709
    • /
    • 2019
  • Recently, heart rate signal, which is one of biological signals, have been used in various fields related to healthcare. Conventionally, most of the proposed heart rate signal detection methods are contact type methods, but there is a problem of discomfort that the subject have to contact with the device. In order to solve the problem, detection study by non-contact method has been progressed recently. The detected heart rate signal can be used for finger vein liveness detection and various application using heart rate. In this paper, we propose a method to obtain heart rate signal by using finger vein imaging system. The proposed method detected the signal from the changes of the brightness value in the time domain of the infrared finger vein images and converted it into the frequency domain using the image processing algorithm. After the conversion, we removed the noise not related to the heart rate signal through band-pass filtering. In order to evaluate the accuracy of the signal, we analyzed the correlation with the signal obtained simultaneously with the finger vein acquisition device and contact type PPG sensor approved by KFDA. As a result, it was possible to confirm that the heart rate signal detected in non-contact method through the finger vein image coincides with the waveform of actual heart rate signal.