• 제목/요약/키워드: Heart-rate accuracy

검색결과 124건 처리시간 0.021초

Accuracy Verification of Heart Rate and Energy Consumption Tracking Devices to Develop Forest-Based Customized Health Care Service Programs

  • Choi, Jong-Hwan;Kim, Hyeon-Ju
    • 인간식물환경학회지
    • /
    • 제22권2호
    • /
    • pp.219-229
    • /
    • 2019
  • This study was carried out to verify the accuracy of fitness tracking devices in monitoring heart rate and energy consumption and to contribute to the development of a forest exercise program that can recommend the intensity and amount of forest exercises based on personal health-related data and provide monitoring and feedback on forest exercises. Among several commercially available wearable devices, Fitbit was selected for the research, as it provides Open API and data collected by Fitbit can be utilized by third parties to develop programs. Fitbit provides users with various information collected during forest exercises including exercise time and distance, heart rate, energy consumption, as well as the altitude and slope of forests collected by GPS. However, in order to verify the usability of the heart rate and energy consumption data collected by Fitbit in forest, the accuracy of heart rate and energy consumption were verified by comparing the data collected by Fitbit and reference. In this study, 13 middle-aged women were participated, and it was found that the heart rate measured by Fitbit showed a very low error rate and high correlation with that measured by the reference. The energy consumption measured by Fitbit was not significantly different from that measured in the reference, but the error rate was slightly higher. However, there was high correlation between the results measured by Fibit and the reference, therefore, it can be concluded that Fitbit can be utilized in developing actual forest exercise programs.

심박동수 및 관상동맥 석회화가 64 절편 다중검출기 심장 CT의 관상동맥 질환 진단일치도에 미치는 영향 (The Influence of Heart Rate and Coronary Calcification on the Diagnostic Accuracy of 64-slice Multidetector Cardiac CT in Coronary Artery Disease)

  • 강영한;박종삼
    • 한국콘텐츠학회논문지
    • /
    • 제9권12호
    • /
    • pp.339-347
    • /
    • 2009
  • 연구목적: 64 절편 MDCT를 이용한 심장 CT의 진단일치도를 알아보고, 심박동수와 관상동맥 석회화가 진단일치도에 영향을 미치는지 확인하여 심장 CT 검사 시 기초 자료로 활용하고자 함이다. 연구방법: 심장 CT와 관상동맥 조영술을 함께 시행한 178명(남자 84명, 여자 94명)을 대상으로 심장 CT에서 관상동맥 협착과 심박동수, 석회화 수치를 측정하였고, 관상동맥조영술에서 좌전하행동맥, 좌회선동맥, 우관상동맥의 유의한 협착($\geq50%$)이 있는지 확인하였다. 관상동맥 조영술의 결과를 표준으로 심장 CT의 민감도, 특이도, 양성예측도, 음성예측도, kappa index($\kappa$)를 계산하였다. 연구결과: 환자별 협착의 정도를 평가한 결과 심장 CT의 정확도는 96.6%였다. 혈관별로는 LAD, LCX, RCA 각각 86.5%, 84.3%, 92.1%로 높은 진단일치도를 보였다. 체질량지수와 혈압은 심장 CT의 진단일치도에 영향을 미치지 않았다. 심박동수는 60/min 미만에서 정확도 90.1%, $\kappa$값 0.78이었고, 70/min 이상에서는 정확도가 75.8%, $\kappa$값 0.52이었다. 관상동맥 석회화지수 100 미만에서는 정확도가 91.3%, $\kappa$값 0.81이었고, 석회화지수 400 이상에서는 정확도 68.6%, $\kappa$값 0.33으로 떨어졌다. 결론: 64 절편 MDCT를 이용한 심장 CT는 관상동맥 조영술과 거의 비슷한 진단일치도를 나타냈다. 하지만 심박동수 70/min 이상, 관상동맥 석회화지수 400 이상에서는 진단일치도가 저하되었기 때문에 심장 CT 검사 시 심박동수와 관상동맥 석회화지수를 확인하여 검사하여야 하고, 심박동수가 70/min 이상이면 베타차단제를 사용하여 심박동수를 조절하여야 한다.

Non-Contact Heart Rate Monitoring from Face Video Utilizing Color Intensity

  • Sahin, Sarker Md;Deng, Qikang;Castelo, Jose;Lee, DoHoon
    • Journal of Multimedia Information System
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Heart Rate is a crucial physiological parameter that provides basic information about the state of the human body in the cardiovascular system, as well as in medical diagnostics and fitness assessments. At present day, it has been demonstrated that facial video-based photoplethysmographic signal captured using a low-cost RGB camera is possible to retrieve remote heart rate. Traditional heart rate measurement is mostly obtained by direct contact with the human body, therefore, it can result inconvenient for long-term measurement due to the discomfort that it causes to the subject. In this paper, we propose a non-contact-based remote heart rate measuring approach of the subject which depends on the color intensity variation of the subject's facial skin. The proposed method is applied in two regions of the subject's face, forehead and cheeks. For this, three different algorithms are used to measure the heart rate. i.e., Fast Fourier Transform (FFT), Independent Component Analysis (ICA) and Principal Component Analysis (PCA). The average accuracy for the three algorithms utilizing the proposed method was 89.25% in both regions. It is also noteworthy that the FastICA algorithm showed a higher average accuracy of more than 92% in both regions. The proposed method obtained 1.94% higher average accuracy than the traditional method based on average color value.

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.

얼굴 영상 기반의 심박수 추정을 위한 딥러닝 모델의 경량화 기법 (Lightweight Deep Learning Model for Heart Rate Estimation from Facial Videos)

  • 황규태;박명근;이상준
    • 대한임베디드공학회논문지
    • /
    • 제18권2호
    • /
    • pp.51-58
    • /
    • 2023
  • This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.

InceptionV3 기반의 심장비대증 분류 정확도 향상 연구 (A Study on the Improvement of Accuracy of Cardiomegaly Classification Based on InceptionV3)

  • 정우연;김정훈
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권1호
    • /
    • pp.45-51
    • /
    • 2022
  • The purpose of this study is to improve the classification accuracy compared to the existing InceptionV3 model by proposing a new model modified with the fully connected hierarchical structure of InceptionV3, which showed excellent performance in medical image classification. The data used for model training were trained after data augmentation on a total of 1026 chest X-ray images of patients diagnosed with normal heart and Cardiomegaly at Kyungpook National University Hospital. As a result of the experiment, the learning classification accuracy and loss of the InceptionV3 model were 99.57% and 1.42, and the accuracy and loss of the proposed model were 99.81% and 0.92. As a result of the classification performance evaluation for precision, recall, and F1 score of Inception V3, the precision of the normal heart was 78%, the recall rate was 100%, and the F1 score was 88. The classification accuracy for Cardiomegaly was 100%, the recall rate was 78%, and the F1 score was 88. On the other hand, in the case of the proposed model, the accuracy for a normal heart was 100%, the recall rate was 92%, and the F1 score was 96. The classification accuracy for Cardiomegaly was 95%, the recall rate was 100%, and the F1 score was 97. If the chest X-ray image for normal heart and Cardiomegaly can be classified using the model proposed based on the study results, better classification will be possible and the reliability of classification performance will gradually increase.

Influence of Heart Rate and Innovative Motion-Correction Algorithm on Coronary Artery Image Quality and Measurement Accuracy Using 256-Detector Row Computed Tomography Scanner: Phantom Study

  • Jeong Bin Park;Yeon Joo Jeong;Geewon Lee;Nam Kyung Lee;Jin You Kim;Ji Won Lee
    • Korean Journal of Radiology
    • /
    • 제20권1호
    • /
    • pp.94-101
    • /
    • 2019
  • Objective: To investigate the efficacy of motion-correction algorithm (MCA) in improving coronary artery image quality and measurement accuracy using an anthropomorphic dynamic heart phantom and 256-detector row computed tomography (CT) scanner. Materials and Methods: An anthropomorphic dynamic heart phantom was scanned under a static condition and under heart rate (HR) simulation of 50-120 beats per minute (bpm), and the obtained images were reconstructed using conventional algorithm (CA) and MCA. We compared the subjective image quality of coronary arteries using a four-point scale (1, excellent; 2, good; 3, fair; 4, poor) and measurement accuracy using measurement errors of the minimal luminal diameter (MLD) and minimal luminal area (MLA). Results: Compared with CA, MCA significantly improved the subjective image quality at HRs of 110 bpm (1.3 ± 0.3 vs. 1.9 ± 0.8, p = 0.003) and 120 bpm (1.7 ± 0.7 vs. 2.3 ± 0.6, p = 0.006). The measurement error of MLD significantly decreased on using MCA at 110 bpm (11.7 ± 5.9% vs. 18.4 ± 9.4%, p = 0.013) and 120 bpm (10.0 ± 7.3% vs. 25.0 ± 16.5%, p = 0.013). The measurement error of the MLA was also reduced using MCA at 110 bpm (19.2 ± 28.1% vs. 26.4 ± 21.6%, p = 0.028) and 120 bpm (17.9 ± 17.7% vs. 34.8 ± 19.6%, p = 0.018). Conclusion: Motion-correction algorithm can improve the coronary artery image quality and measurement accuracy at a high HR using an anthropomorphic dynamic heart phantom and 256-detector row CT scanner.

뇌성마비아동과 정상아동의 보행전후 산소포화도 및 심박수 비교에 관한 연구 (Comparison of oxygen saturation, heart rate of cerebral palsy and normal child between the pre-ambulation and post-ambulation)

  • 황주문;이완희
    • 대한물리치료과학회지
    • /
    • 제10권1호
    • /
    • pp.38-46
    • /
    • 2003
  • Since the current tendencies show us the increasing number of cerebral palsy children and the standard longevity, we need to find out more research about the following various problems. Therefore I have tried to figure out the difference of oxygen saturation and heart rate between before ambulation and after. Objects chosen are 17 C.P children on the process of treatment those who were able to walk and 8 normal children in Ah-San hospital, Gang-Nung. They haven't had either any operation or suffered heart disease and I measured their oxygen saturation and heart rate by using pulse-oximeter and are analyzed by SPSS (10.07 version). Results are the followings; 1. There was no difference of oxygen saturation and heart rate between pre-ambulation and post-ambulation of normal and spastic hemiplegia children. 2. There showed the significant statistic difference of oxygen saturation, heart rate between pre-ambulates and post-ambulation of normal and spastic diplegia(p<.05). 3. There was no difference of oxygen saturation, heart rate in C.P between(p>.05), but shows the significant statistic difference in heart rate(p<.05). As I compared the oxygen saturation and heart rate of spastic and normal children on between pre-ambulation and post-ambulation, theres is significant statistic difference on both items (p<.05). However there was no difference of oxygen saturation among hemiplegia, normal and diplegia children while the pulse rate showed the significant difference(p<.05). According to this clinical research, CP children's oxygen saturation and heart rate had no change between pre and post compared to normal children. But there was difference in diplegia. This is why we need to invest time to study these kinds of research about various analysis and comparison of oxygen saturation and heart rate, and furthermore making use of pulse-oxymetry in physical therapy room for the children involved would be beneficial to calculate in accuracy without any discomfort for the patient as well.

  • PDF

NFC 기반 사용자 중심의 모듈형 심박측정 의류 시스템 개발 (Development of a Modular Clothing System for User-Centered Heart Rate Monitoring based on NFC)

  • 조하경;조상우;조광연
    • 감성과학
    • /
    • 제23권2호
    • /
    • pp.51-60
    • /
    • 2020
  • 본 연구의 목적은 심박 측정용 기기 및 의류에 있어 배터리 충전 및 기기의 부피감으로 인한 불편함을 개선하고, 사용자 편의성을 고려하여 목적에 따른 심박 측정을 가능케 하는 심박 측정용 스마트 의류 시스템을 개발하고자 하였다. 심박 측정 기기는 2가지 타입으로 모듈화되어 개발되었으며, 탈부착을 통해 목적형 및 지속적 심박 측정이 가능하도록 구성하였다. 목적형 심박측정 기기는 NFC(Near Field Communication), 심박 센서를 내장하고 필요시에 스마트 폰 태깅을 통해 심박 측정이 가능하게 하는 의류에 부착된 타입으로 개발되었으며, 지속형 심박 측정 기기는 BLE(Bluetooth Low Energy) 통신 및 배터리를 내장하여 목적형 기기와 결합을 통해 통신 및 전원을 지원, 지속적으로 심박 측정이 가능한 시스템으로 구성되었다. 심박 측정을 위한 섬유 전극은 은사 기반의 편물 전극으로, 심박 측정에 용이하도록 대흉근 아래에 위치하도록 디자인되었으며, 목적형 심박측정 기기가 전극과 연결되도록 구성되었다. 연동되는 어플리케이션은 사용자 경험요소, 주요기능 및 사용편의성 등을 고려하여 개발되었으며, 사용성 향상을 위하여 스마트 폰 태깅을 통해 자동 동기화가 되도록 개발되었다. 본 연구에서 개발된 심박측정 스마트 의류 시스템의 심박측정 정확도를 평가하기 위하여, 10명의 20대 남성 피험자를 대상으로 2단계의 실험을 설계하고 진행하였으며, POLAR RS800을 통해 측정되는 신호를 기준 심박으로 비교·분석하였다. 그 결과, 목적형 스마트 의류 시스템의 평균 심박수는 85.37, 기준 기기 심박수는 87.03으로 96.73%의 정확도를 갖는 것으로 분석되었으며, T 값 -1.892 (p=.091)로 두 신호간의 유의한 차이는 없는 것으로 분석되었다. 지속형 스마트 의류 시스템의 평균 심박수는 86.00, 기준 기기 심박수는 86.97로 97.16%의 정확도를 보였으며, T 값 -1.089(p=0.304)로 두 시스템 간의 측정 차이는 없는 것으로 분석되었다. 본 연구에서는 사용자의 목적에 따라 심박측정이 가능한 모듈형 스마트 의류 시스템을 개발하고 검증한 것에 의의가 있다. 또한, 모듈화 된 심박측정 의류 시스템 개발로 불필요한 기능으로 인한 가격 상승을 줄임으로써 이원화된 상품 기획의 가능성을 제시하였다.

산소 공급으로 유발된 공간 인지 능력, 혈중 산소 농도, 심박동율의 변화 (Visuospatial Cognitive Performance, Hyperoxia and Heart Rate due to Oxygen Administration)

  • 정순철;손진훈;이봉수;이수열
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.193-198
    • /
    • 2005
  • Changes in visuospatial cognitive performance, blood oxygen saturation and heart rate due to the highly concentrated oxygen administration were observed in this study. Six male ($25.8 \pm$1.0) and six female (($23.8 \pm$ 1.9) adults were asked to perform 20 visuospatial tasks with the same level of difficulties by supplying two different oxygen levels (21%, 30%). Experiment consisted of Rest1 (1 min.), Control (1 min.), Task (4 min.), and Rest2 (4 min.) and physiological signals such as blood oxygen saturation and heart rate were measured through each stage. The result showed the accuracy of task performance increased significantly at 30% oxygen concentration compared with 21%, which means oxygen supply has positive effects on visuospatial cognitive performance. When 30% oxygen was supplied, blood oxygen saturation during control and task phases was increased and heart rate was decreased compared with 21%. It means that 30% oxygen can stimulate brain activities by directly increasing the actual level of blood oxygen concentration during cognitive performance, and enough oxygen supply during cognitive performance make heart rate decrease.