IEMEK Journal of Embedded Systems and Applications
/
v.14
no.3
/
pp.123-131
/
2019
In recent years, a non-contact respiration and heart rates monitoring via IR-UWB radar has been paid much attention to in various applications - patient monitoring, occupancy detection, survivor exploring in disaster area, etc. In this paper, we address a novel approach of real time heart rate estimation using IR-UWB radar. We apply sine fitting and peak detection method for estimating respiration rate and heart rate, respectively. We also deploy two techniques to mitigate the error caused by wrong estimation of respiration rate: a moving average filter and finding the frequency of the highest occurrence. Experimental results show that the algorithm can estimate heart rate in real time when respiration rate is presumed to be estimated accurately.
Kim, Sunho;Lee, Jungsub;Kang, Hyunil;Ohn, Baeksan;Baek, Gyehyun;Jung, Minkyu;Im, Sungbin
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.8
/
pp.18-26
/
2015
Measuring the heart rate during exercise is important to properly control the amount of exercise. With the recent advent of smart device usage, there is a dramatic increase in interest in devices for the real-time measurement of the heart rate during exercise. During intensive exercise, accurate heart rate estimation from wrist-type photoplethysmography (PPG) signals is a very difficult problem due to motion artifact (MA). In this study, we propose an efficient algorithm for an accurate estimation of the heart rate from wrist-type PPG signals. For the twelve data sets, the proposed algorithm achieves the average absolute error of 1.38 beat per minute (BPM) and the Pearson correlation between the estimates and the ground-truth of heart rate was 0.9922. The proposed algorithm presents the strengths in an accurate estimation together with a fast computation speed, which is attractive in application to wearable devices.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.51
no.4
/
pp.167-174
/
2002
This study describes a fetal heart rate(FHR) estimation algorithm using phonogram. Using a phonogram amplifier, various fetal heart sounds are collected in a university hospital. The FHR estimation algorithms consists of a lowpass filter, decimation, envelop detection, pitch detection, and post-processing. The post-processing is the FHR decision procedure using all informations of fetal heart rates. Using the algorithm and other parameters of fetal heart sound, a fetal monitoring software was developed. This can display the original signals, the FFT spectra, FHR and its trajectory. Even though the fetal phonogram amplifier detects the fetal heart sounds well, the sound quality is not so good as the ultrasonography. In case of very week fetal heart sound, autocorrelation of it showed clear periodicity. But two main peaks in one period is an obstacle in pitch detection and peaks are not so vivid. The proposed FHR estimation algorithm showed very accurate and stable results. Since the developed software displays multiple parameters in real time and has convenient functions, it will be useful for the phonogram-style fetal monitoring device.
Journal of the Korea Society of Computer and Information
/
v.28
no.12
/
pp.1-7
/
2023
The advent of deep learning technologies has led to the development of various medical applications, making healthcare services more convenient and effective. Among these applications, heart rate estimation is considered a vital method for assessing an individual's health. Traditional methods, such as photoplethysmography through smart watches, have been widely used but are invasive and require additional hardware. Recent advancements allow for contactless heart rate estimation through facial image analysis, providing a more hygienic and convenient approach. In this paper, we propose a lightweight methodology capable of accurately estimating heart rate in mobile environments, using a specialized 2-channel network structure based on 2D convolution. Our method considers both subtle facial movements and color changes resulting from blood flow and muscle contractions. The approach comprises two major components: an Encoder for analyzing image features and a regression layer for evaluating Blood Volume Pulse. By incorporating both features simultaneously our methodology delivers more accurate results even in computing environments with limited resources. The proposed approach is expected to offer a more efficient way to monitor heart rate without invasive technology, particularly well-suited for mobile devices.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.5
/
pp.486-494
/
2014
Intelligent homes consist of ubiquitous sensors, home networks, and a context-aware computing system. These homes are expected to offer many services such as intelligent air-conditioning, lighting control, health monitoring, and home security. In order to realize these services, many researchers have worked on various research topics including smart sensors with low power consumption, home network protocols, resident and location detection, context-awareness, and scenario and service control. This paper presents the real-time metabolic rate estimation method that is based on measured heart rate for human adaptive appliance (air-conditioner, lighting etc.). This estimation results can provide valuable information to control smart appliances so that they can adjust themselves according to the status of residents. The heart rate based method has been experimentally compared with the location-based method on a test bed.
IEMEK Journal of Embedded Systems and Applications
/
v.17
no.1
/
pp.25-32
/
2022
IR-UWB radar has been regarded as the most promising technology for non-contact respiration and heartbeat monitoring because of its ability of detecting slight motion even in submillimeter range. Measuring heart rate is most challenging since the chest movement by heartbeat is quite subtle and easily interfered with by a random body motion or background noise. Additionally, periodic sampling can be limited by the performance of computer that handles the radar signals. In this paper, we deploy Lomb-Scargle periodogram method that estimates heart rate even with irregularly sampled data and uneven signal amplitude. Lomb-Scargle periodogram is known as a method for finding periodicity in irregularly-sampled and noisy data set. We also implement a motion detection scheme in order to make the heart rate estimation pause when a random motion is detected. Our scheme is implemented using Novelda's X4M03 radar development kit and its corresponding drivers and Python packages. Experimental results show that the estimation with Lomb-Scargle periodogram yield more accurate heart rate than the method of measuring peak-to-peak distance.
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.2
/
pp.51-58
/
2023
This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.
Heart rate variability (HRV) in electrocardiogram (ECG) is an important index for understanding the health status of heart and the autonomic nervous system. Most HRV analysis approaches are based on the proper heart rate (HR) data. Estimation of heart rate is thus a key process in the HRV study. In this paper, we report an innovative method to estimate the heart rate. This method is mainly based on the concept of periodicity transform (PT) and instantaneous period (IP) estimate. The method presented is accordingly called the "PT-IP method." It does not require ECG R-wave detection and thus possesses robust noise-immune capability. While the noise contamination, ECG time-varying morphology, and subjects' physiological variations make the R-wave detection a difficult task, this method can help us effectively estimate HR for medical research and clinical diagnosis. The results of estimating HR from empirical ECG data verify the efficacy and reliability of the proposed method.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.5
/
pp.675-679
/
2018
A novel heart rate estimation algorithm is presented based on normalized least-mean-square (NLMS) algorithm. This paper presented a three-step processing scheme for estimating heart rate from PPG signal with motion artifacts. The proposed active noise cancellation algorithm has low computational complexity compared to the NLMS algorithm. Experimental results show that the proposed algorithms perform similar with the previous algorithm under motion artifact noises.
Journal of information and communication convergence engineering
/
v.8
no.1
/
pp.112-115
/
2010
The heart rate is the most important vital sign in diagnosing heart status. The simple method to measure the heart rate in the mobile healthcare device is using the PPG signal. In developing the mobile healthcare device using the PPG signal, the most important issue is the inaccuracy of the measured heart rate because the PPG signal is distorted from the user's motions. To improve the problem, this study proposed the new method that is to estimate the heart rate without an additional sensor in real life. The proposed method in this study is using the histogram filter. In order to evaluate the performance of the proposed method, the study compares its results with the moving average method in motion environment. According to the experimental results, the performance of the proposed method was more than 40% better than the performances of the MAF.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.