• 제목/요약/키워드: Heart Sound Segmentation

검색결과 5건 처리시간 0.015초

Performance Comparison Between the Envelope Peak Detection Method and the HMM Based Method for Heart Sound Segmentation

  • Jang, Hyun-Baek;Chung, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권2E호
    • /
    • pp.72-78
    • /
    • 2009
  • Heart sound segmentation into its components, S1, systole, S2 and diastole is the first step of analysis and the most important part in the automatic diagnosis of heart sounds. Conventionally, the Shannon energy envelope peak detection method has been popularly used due to its superior performance in locating S1 and S2. Recently, the HMM has been shown to be quite suitable in modeling the heart sound signal and its use in segmenting the heart sound signal has been suggested with some success. In this paper, we compared the two methods for heart sound segmentation using a common database. Experimental tests carried out on the 4 different types of heart sound signals showed that the segmentation accuracy relative to the manual segmentation was 97.4% in the HMM based method which was larger than 91.5% in the peak detection method.

통계적 모델링 기법을 이용한 연속심음신호의 자동분류에 관한 연구 (Automatic Classification of Continuous Heart Sound Signals Using the Statistical Modeling Approach)

  • 김희근;정용주
    • 한국음향학회지
    • /
    • 제26권4호
    • /
    • pp.144-152
    • /
    • 2007
  • 기존의 심음분류를 위한 연구들은 인공신경망을 이용하여 주로 이루어졌다. 그러나 심음신호의 통계적 특성을 분석 한 결과 HMM의 의한 신호모델링이 적합한 것으로 나타났다. 본 연구에서는 다양한 질병을 나타내는 심음신호를 HMM을 이용하여 모델링 하고 인식성능이 심음신호의 클러스터링에 따라서 많이 좌우되는 것을 알 수 있었다. 또한 실제 환경에서의 심음신호는 그 시작과 끝나는 시점이 정해지지 않은 연속신호이다. 따라서 HMM을 이용한 심음분류를 위해서는 연속적인 심음신호로부터 한 사이클의 분할된 심음을 추출할 필요성이 있다. 일반적으로 수동분할은 분할오류를 발생시키며 실시간 심음인식에 적합하지 않으므로 분할과정이 필요치 않는 ergodic형 HMM을 변형하여 사용할 것을 제안하였다. 그리고 제안된 HMM은 연속심음을 이용한 분류실험에서 매우 높은 성능을 보임을 알 수 있었다.

자동 분할과 ELM을 이용한 심장질환 분류 성능 개선 (Performance Improvement of Cardiac Disorder Classification Based on Automatic Segmentation and Extreme Learning Machine)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.32-43
    • /
    • 2009
  • 본 논문은 자동 분할과 extreme learning machine (ELM)을 이용하여 연속 심음신호에 의한 심장질환 분류의 성능을 개선한다. 자동 분할을 위한 전처리 단계에서 비정상적인 심음신호는 심잡음 (murmur)과 클릭음 (click)을 포함하고 있기 때문에 제1음 (S1)과 제2음 (S2) 시작점 검출 결과가 부정확하거나 누락되어 기존의 심장질환 분류 시스템의 정확도를 저하시키게된다. 이러한 분할 오류에 의한 성능 저하를 감소하기 위해 S1 및 S2의 위치를 찾고, S1 및 S2의 시간 차이를 이용하여 부정확한 시작점을 교정한 다음 한 주기 심음 신호를 추출한다. 특징벡터로는 단일 주기의 심음 신호로부터 추출된 멜척도 필터뱅크 로그 에너지 계수와 포락선을 사용한다. 심장질환을 분류하기 위하여 한 개의 은닉층을 가진 ELM 알고리듬을 사용한다. 9가지 심장질환 분류 실험을 수행한 결과, 제안 방법은 81.6%의 분류 정확도를 나타내며, multi-layer perceptron(MLP), support vector machine (SVM), hidden Markov model (HMM) 중에서 가장 높은 분류 정확도를 보여준다.

심음 포락선의 3차 모멘트를 이용한 심음의 주성분 검출 (Detection of Main Components of Heart Sound Using Third Moment Characteristics of PCG Envelope)

  • 전성일;배건성
    • 한국정보통신학회논문지
    • /
    • 제17권12호
    • /
    • pp.3001-3008
    • /
    • 2013
  • 심음도(PCG, Phonocardiogram) 분석을 이용하여 심장의 판막과 관련된 질환을 진단하기 위해서는 먼저 심음 분할을 위해 심음의 주성분인 S1과 S2를 정확하게 찾아야 한다. 본 논문에서는 심음포락선의 모멘트 특성을 분석하고 이를 심음 분할에 적용하였다. 기존의 2차 모멘트를 이용한 심음 분할의 문제점을 분석하고, 심잡음이 있더라도 심음 주성분의 검출이 용이한 3차 모멘트에 기반한 방법을 제안하였다. 심음포락선은 심음 신호의 단구간 에너지를 이용하였으며, 3차 모멘트 궤적의 기울기 정보를 이용하여 심음 주성분을 검출하고 지속시간을 게이팅(gating) 하였다. 다양한 심잡음이 포함된 심음 신호에 대한 실험을 통해 제안한 방법이 기존의 2차 모멘트 기법보다 심잡음의 영향을 적게 받고 심음 주성분의 구간을 정확하게 검출 할 수 있음을 보였다.

SVM을 이용하여 HMM과 심잡음 점수를 결합한 심음 기반 심장질환 분류기 (Heart Sound-Based Cardiac Disorder Classifiers Using an SVM to Combine HMM and Murmur Scores)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제30권3호
    • /
    • pp.149-157
    • /
    • 2011
  • 본 논문은 support vector machine (SVM)을 사용하여 은닉 마코프 모델 (HMM)과 심잡음 존재 정보를 결합한 새로운 심장질환 분류 방법을 제안한다. 켑스트럼 특징과 HMM 비터비 (Viterbi) 알고리듬을 이용하여 입력 신호를 모든 심장질환 모델에 대하여 상태 단위로 분할하여 상태별로 로그우도 (점수)를 계산한다. 심잡음 신호의 시간적 위치 특성을 이용하기 위하여 입력신호를 두 개의 부대역으로 나누고 부대역별로 프레임 단위의 심잡음 점수를 계산한 다음, 비터비 알고리듬으로부터 구한 상태 분할 정보를 이용하여 상태단위의 심잡음 점수를 구한다. SVM은 모든 심장질환 종류에 대한 상태 단위의 HMM과 심잡음 점수를 입력으로 하여 최종적으로 심장질환을 판정한다. 심장질환 분류 실험결과, 제안한 방법은 기존의 켑스트럼 특징과 HMM 분류기를 이용한 방법에 비하여 20.4 %의 상대적 개선율을 보여준다.