심장의 활동을 기록한 심전도는 심장의 상태에 대한 가치 있는 임상 정보를 제공한다. 지금까지 심전도를 이용한 심장 질환 진단 알고리즘에 대한 많은 연구가 진행되어 왔으나, 심장 질환에 대한 국내 진단 결과의 부정확성 때문에 외국의 진단 알고리즘을 사용하고 있다. 이 논문에서는 원시 심전도 데이터로부터 심장 질환 진단의 파라미터인 ST-segment 추출 방법을 제안한다. ST-segment는 관상동맥 질환 예측에 활용되므로 데이터마이닝의 분류기법을 적용하여 질환을 예측한다. 또한 연관규칙 마이닝을 통해 환자들의 임상 데이터로부터 심장 질환자들의 임상적 특징을 예측한다.
심장의 활동을 기록한 심전도는 심장의 상태에 대한 가치 있는 임상 정보를 제공한다. 지금까지 심전도를 이용한 심장 질환 진단 알고리즘에 대한 많은 연구가 진행되어 왔으나, 심장 질환에 대한 진단 결과의 부 정확성으로 인해 심전계에서는 외국의 진단 알고리즘을 사용하고 있다. 이 논문에서는 심전도 데이터의 수집에서부터 전 처리 과정 그리고 데이터마이닝을 이용한 심장 질환 패턴 분류 기법을 제안한다. 이 패턴 분류기법은 빈발 패턴 베이지안이며 기존의 나이브 베이지안과 빈발 패턴 마이닝의 통합이다. 빈발 패턴 베이지안은 훈련단계에서 탐사된 빈발 패턴들을 사용하여 Product Approximation 구성하므로써 클래스 조건 독립 가정을 가진 나이브 베이지안의 단점을 해결한다.
This paper studies medical data classification methods, comparing decision tree and system reconstruction analysis as applied to heart disease medical data mining. The data we study is collected from patients with coronary heart disease. It has 1,723 records of 71 attributes each. We use the system-reconstruction method to weight it. We use decision tree algorithms, such as induction of decision trees (ID3), classification and regression tree (C4.5), classification and regression tree (CART), Chi-square automatic interaction detector (CHAID), and exhausted CHAID. We use the results to compare the correction rate, leaf number, and tree depth of different decision-tree algorithms. According to the experiments, we know that weighted data can improve the correction rate of coronary heart disease data but has little effect on the tree depth and leaf number.
International Journal of Advanced Culture Technology
/
제5권3호
/
pp.40-45
/
2017
This data mining technique was used to extract useful information from percutaneous coronary intervention data obtained from the US public data homepage. The experiment was performed by extracting data on the area, frequency of operation, and the number of deaths. It led us to finding of meaningful correlations, patterns, and trends using various algorithms, pattern techniques, and statistical techniques. In this paper, information is obtained through efficient decision tree and cluster analysis in predicting the incidence of percutaneous coronary intervention and mortality. In the cluster analysis, EM algorithm was used to evaluate the suitability of the algorithm for each situation based on performance tests and verification of results. In the cluster analysis, the experimental data were classified using the EM algorithm, and we evaluated which models are more effective in comparing functions. Using data mining technique, it was identified which areas had effective treatment techniques and which areas were vulnerable, and we can predict the frequency and mortality of percutaneous coronary intervention for heart disease.
AL badr, Benan Abdullah;AL ghezzi, Raghad Suliman;AL moqhem, ALjohara Suliman;Eljack, Sarah
International Journal of Computer Science & Network Security
/
제22권5호
/
pp.135-142
/
2022
Despite global medical advancements, many patients are misdiagnosed, and more people are dying as a result. We must now develop techniques that provide the most accurate diagnosis of heart disease based on recorded data. To help immediate and accurate diagnose of heart disease, several data mining methods are accustomed to anticipating the disease. A large amount of clinical information offered data mining strategies to uncover the hidden pattern. This paper presents, comparison between different classification techniques, we applied on the same dataset to see what is the best. In the end, we found that the Random Forest algorithm had the best results.
International journal of advanced smart convergence
/
제6권3호
/
pp.22-28
/
2017
With the recent development of technologies to manage vast amounts of data, data mining technology has had a major impact on all industries.. Data mining is the process of discovering useful correlations hidden in data, extracting executable information for the future, and using it for decision making. In other words, it is a core process of Knowledge Discovery in data base(KDD) that transforms input data and derives useful information. It extracts information that we did not know until now from a large data base. In the decision tree, c4.5 algorithm was used. In addition, the C4.5 algorithm was used in the decision tree to analyze the difference between frequency and mortality in the region. In this paper, the frequency and mortality of percutaneous coronary intervention for patients with heart disease were divided into regions.
International Journal of Computer Science & Network Security
/
제24권10호
/
pp.1-16
/
2024
Due to its complexity and high diagnosis and treatment costs, heart attack (HA) is the top cause of death globally. Heart failure's widespread effect and high morbidity and death rates make accurate and fast prognosis and diagnosis crucial. Due to the complexity of medical data, early and accurate prediction of HA is difficult. Healthcare providers must evaluate data quickly and accurately to intervene. This novel hybrid approach predicts HA using Long Short-Term Memory (LSTM) networks, Deep belief networks (DBNs) with attention mechanism, and robust data mining to fill this essential gap. HA is predicted using Kaggle, PhysioNet, and UCI datasets. Wearable sensor data, ECG signals, and demographic and clinical data provide a solid analytical base. To maintain consistency, ECG signals are normalized and segmented after thorough cleaning to remove missing values and noise. Feature extraction employs complex approaches like Principal Component Analysis (PCA) and Autoencoders to pick time-domain (MNN, SDNN, RMSSD, PNN50) and frequency-domain (PSD at VLF, LF, HF bands) characteristics. The hybrid model architecture uses LSTM networks for sequence learning and DBNs for feature representation and selection to create a robust and comprehensive prediction model. Accuracy, precision, recall, F1-score, and ROC-AUC are measured after cross-entropy loss and SGD optimization. The LSTM-DBN model outperforms predictive methods in accuracy, sensitivity, and specificity. The findings show that several data sources and powerful algorithms can improve heart attack predictions. The proposed architecture performed well on many datasets, with an accuracy rate of 96.00%, sensitivity of 98%, AUC of 0.98, and F1-score of 0.97. High performance proves this system's dependability. Moreover, the proposed approach is outperformed compared to state-of-the-art systems.
요즘, 우울증 및 스트레스로 자살하는 환자가 급증하고 있다. 뿐만 아니라, 스트레스 및 우울증이 오래 지속되면, 심장병 및 뇌 질환, 고혈압 등을 유발할 수 있는 위험한 요소로 질환이다. 그러나, 아무리 현대 의학이 발전하였지만, 우울증 및 심장병 환자에게는 특별한 약이나 치료제가 없는 매우 난감한 상황이다. 그러므로, 세계 여러 나라에서, 심전도 및 산소포화도, 뇌파 분석 기능을 이용해서 우울증 위험환자 및 자살 위험환자를 조기에 판단하는 연구가 활발하게 이루어지고 있다. 본 논문에서는, 이러한 문제점을 분석하기 위해서, 심장병 가설데이터를 수립해서, 심장병 위험환자를 판단하는 컴퓨터 모의실험을 수행하였다. 특히, 심장병 발생 예측을 을 10% 이상 향상하게 시키기 위해서, 퍼지 추론을 사용하는 모의실험을 수행하였다.
In recent years, text mining has been used to extract meaningful insights from the large volume of unstructured text data sets of various domains. As one of the most representative text mining applications, topic modeling has been widely used to extract main topics in the form of a set of keywords extracted from a large collection of documents. In general, topic modeling is performed according to the weighted frequency of words in a document corpus. However, general topic modeling cannot discover the relation between documents if the documents share only a few terms, although the documents are in fact strongly related from a particular perspective. For instance, a document about "sexual offense" and another document about "silver industry for aged persons" might not be classified into the same topic because they may not share many key terms. However, these two documents can be strongly related from the R&D perspective because some technologies, such as "RF Tag," "CCTV," and "Heart Rate Sensor," are core components of both "sexual offense" and "silver industry." Thus, in this study, we attempted to discover the differences between the results of general topic modeling and R&D perspective topic modeling. Furthermore, we package social issues from the R&D perspective and present a prototype system, which provides a package of news articles for each R&D issue. Finally, we analyze the quality of R&D perspective topic modeling and provide the results of inter- and intra-topic analysis.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.171-176
/
2022
A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.