• Title/Summary/Keyword: Hearing threshold shift

Search Result 12, Processing Time 0.016 seconds

An Assessment of Notice Exposure by Job and Dosimeter Parameters Setting in Automobile Press Factory (자동차 프레스 공정에 있어서 직무 및 누적소음기 설정치 차이에 따른 작업자의 소음노출 평가)

  • Jeong, Jee Yeon;Park, Seunghyun;Yi, GwangYong;Lee, Naroo;You, Ki Ho;Park, Junsun;Chung, Ho Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.190-197
    • /
    • 2001
  • Noise-induced hearing loss(NIHL) was the highest rate (43.5%~58.5% from 1996 to 1998) of positive findings through specific medical program in Korea. There were much more NIHL at workers of automobile manufacturing factories than other manufacturing factories. The specific aim of the present study was to determine the noise exposure of automobile press lines, according to their job titles, press line types(auto, semiauto), dosimeter parameters setting. There were a total 11 press lines sampled at a automobile manufacturing company. Among those press lines, 10 press lines were autolines with acoustic enclosure, one semiauto press line was no aucostic enclosure Noise exposure data were sampled for an work shift using noise dosimeter, which recorded both time-weighted average(TWA) and 1-min average. The mean OSHA TWA(Korea TWA with threshold 90) was $80.7dB(A){\pm}4.7dB(A)$ for leader, $82.8dB(A{\pm}4.5dB(A)$ for pallette man, $76.7dB(A){\pm}4.3dB(A)$ for press operators, $76.6dB(A){\pm}5.6dB(A)$ for crane operators, $77.1dB(A){\pm}2.8dB(A)$ for forklift drivers, whereas the mean NIOSH TWA was $88.9dB(A){\pm}1.7dB(A)$ for leader, $89.6dB(A){\pm}2.1dB(A)$ for pallette man, $86.7dB(A){\pm}1.8dB(A)$ for press operators, $88.5dB(A){\pm}2.0dB(A)$ for crane operators, $87.7dB(A){\pm}1.0dB(A)$ for forklift drivers. While L10 for NIOSH TWA samples was 84.8 dB(A) ~ 87.3 dB(A), L10 for OSHA TWA samples was 69.5 dB(A) ~ 77.4 dB(A). L10 means that the TWA for 90% of the samples exceeded L10. Among OSHA TWA(Korea TWA with threshold 90) samples for pallette man, 7.7 % exceeded 90 dB(A), the OSHA permissible exposure level, but OSHA TWA samples for the other job titles didn't. Among NIOSH TWA samples, the samples over 85 dB(A), the NIOSH recommended exposure limit, was 100% (leaders), 83.3 %(operators), 97.4%(palletteman), 100%(forklift drivers), 91.7 %(crane operator). The results of One-way random effects analysis of variance models shows that the difference between job titles was significant by OSHA TWA(p<0.05), but not significant by NIOSH TWA(p>0.05). NIOSH TWA samples were significantly higher than OSHA TWA samples(P<0.05). Regression analysis was used to obtain relationships between OSHA TWA samples and NIOSH TWA samples. In this case the coefficient of determination = 0.90, which shows the high degree association between two methods. Regression equation, NIOSH TWA = 0.552 * OSHA TWA + 42.13 dB(A), shows that if OSHA TWA is known, NIOSH TWA can be predicted by the equation. The mean TWA difference between threshold 80 dBA and 90 dBA was significant(p<0.01). While the TWA noise exposures were 7.7% above the Korea(OSHA) PEL, they were more than 83.3% over NIOSH REL. Automobile workers were exposed to noise level that could be potentially damaging to their hearing. It found that there is approximately 25% excess risk of hearing loss even if a worker is protected to the PEL in according to NIOSH study.

  • PDF

Effect of Noise in Human Body (소음이 인체에 미치는 영향)

  • 이영노
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.7-8
    • /
    • 1972
  • The effects of noise exposure are of two types: Nonauditory effects and auditory effects. Nonauditory effects of noise exposure are interference with communication by speech, sleeping and emotional behavior. The noise will cause the high blood pressure and rapid pulse, also that decrease the salivation and gastric juice. in experimentaly showed that the Corticoid hormon: Gonatotropic hormone were decrease and Thyrotropic hormoone is increase. Auditory effect of noise exposure. when the normal ear is exposed to noise at noise at hamful intensities (above 90㏈) for sufficiently long periods of time, a temoral depression of hearing results, disappearing after minutes or hours of rest. When the exposure longer or intesity greater is reached the Permanent threshold shift called noise-induced hearing loss. Hearing loss resulting from noise exposure presents legal as well as medical problems. The otologist who examines and evaluates the industrial hearing loss cases must be properly informed, not only concerning the otologic but also about the physical and legal aspects of the problems. The measurement of hearing ability is the most important part of a hearing conservation, both preplacement and periodic follow-up tests of hearing. The ideal hearing conservation program would be able to reduce or eliminate the hazardous noise at its source or by acoustic isolation of noisy working area and two ear protections (plugs and muff type) were developed for personal protection.

  • PDF