• Title/Summary/Keyword: Healthcare information systems

Search Result 477, Processing Time 0.032 seconds

Implementation Plan of Integrated Medical Information System for Ubiquitous Healthcare Service (U-Healthcare 서비스를 위한 통합의료정보시스템의 구축방안)

  • Jung, Yong-Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.115-126
    • /
    • 2010
  • Modern society can be described as ubiquitous computing over the concept of information. Information technology(IT) has been developing in a way that relative technologies are integrated to each other. Especially in ubiquitous environment, medical information industry shows significant interest in the U-healthcare service area. This paper will first look into U-healthcare service environment and component of Integrated Medical Information Systems(IMIS). Secondly, it examines the basic technological factors for integrated medical information systems, which is datawarehouse, network, communication standards and technology related U-healthcare service. Finally it proposes how to implement and operate new integrated medical information system for ubiquitous health care service. The system will do point of care(POC) for customers by real time and diagnose them using their various and personal medical data. The information will be communicated back to the customers, which will improve their satisfaction.

Implementing Rule-based Healthcare Edits

  • Abdullah, Umair;Shaheen, Muhammad;Ujager, Farhan Sabir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.116-132
    • /
    • 2022
  • Automated medical claims processing and billing is a popular application domain of information technology. Managing medical related data is a tedious job for healthcare professionals, which distracts them from their main job of healthcare. The technology used in data management has a sound impact on the quality of healthcare data. Most of Information Technology (IT) organizations use conventional software development technology for the implementation of healthcare systems. The objective of this experimental study is to devise a mechanism for use of rule-based expert systems in medical related edits and compare it with the conventional software development technology. A sample of 100 medical edits is selected as a dataset to be tested for implementation using both technologies. Besides empirical analysis, paired t-test is also used to validate the statistical significance of the difference between the two techniques. The conventional software development technology took 254.5 working hours, while rule-based technology took 81 hours to process these edits. Rule-based technology outperformed the conventional systems by increasing the confidence value to 95% and reliability measure to 0.462 (which is < 0.5) which is three times more efficient than conventional software development technology.

Development of an Ubiquitous Healthcare System based on Health Information Exchange Standards (건강정보 교환 표준에 기반한 유비쿼터스 헬스케어 시스템 개발)

  • Lee, In-Keun;Kim, Hwa-Sun;Cho, Hune
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.273-280
    • /
    • 2012
  • As changed the clinical environment, the interest on u-Healthcare service and systems has been increased. The ubiquitous healthcare(u-Healthcare) systems are constructed at the integrated environment that consists of various devices and systems basically such as personal health devices(PHDs) measuring body signals, information aggregators gathering the data transmitted from PHDs through wireless technology, and health information systems storing and managing personal health information transmitted from the information aggregators. International standards such as IEEE 11073 and HL7 have been specified for the interoperability of PHDs and health information systems, but the research on u-Healthcare systems that were developed and applied in the real clinical environment by adopting the standards was rarely conducted. Therefore, we developed an u-Healthcare system which can manage personal health information, such as blood glucose, blood pressure, and body composition, based on health information exchange standards. Moreover, we verified the stability of the developed system through clinical trial in patients with endocrine disease at the Kyungpook National University Hospital, and listed problems occurred during clinical trial and found their solutions.

Analyses of Characteristics of U-Healthcare System Based on Wireless Communication

  • Kim, Jung Tae
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.337-342
    • /
    • 2012
  • The medical industries are integrated with information technology with mobile devices and wireless communication. The advent of mobile healthcare systems can benefit patients and hospitals, by not only providing better quality of patient care, but also by reducing administrative and medical costs for both patients and hospitals. Security issues present an interesting research topic in wireless and pervasive healthcare networks. As information technology is developed, many organizations such as government agencies, public institutions, and corporations have employed an information system to enhance the efficiency of their work processes. For the past few years, healthcare organizations throughout the world have been adopting health information systems (HIS) based on the wireless network infrastructure. As a part of the wireless network, a mobile agent has been employed at a large scale in hospitals due to its outstanding mobility. Several vulnerabilities and security requirements related to mobile devices should be considered in implementing mobile services in the hospital environment. Secure authentication and protocols with a mobile agent for applying ubiquitous sensor networks in a healthcare system environment is proposed and analyzed in this paper.

A Study on the Integration of Healthcare information Systems in a Distributed Environment (분산 환경에서의 보건의료분야 정보시스템 통합에 관한 연구)

  • Kim, Kyoung-Mok;Park, Yong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.362-370
    • /
    • 2011
  • The current healthcare information systems field demand for healthcare construction and operation of various systems. Therefore, the budget is constantly increasing for information systems. But the current system have been lack of data that provide real-time issues. Because standardization and real-time networks are not configured. In this paper, proposed web services-based integration of information systems about healthcare sector. Web Services as the primary means to pursue integration SOA(Service Oriented Architecture). SOA could add new requirements without significantly altering the existing system. And SOA is an important model that can quickly adapt to the environment in healthcare field of changing rapidly. In this paper, the healthcare sector based on SOA design and implement an integrated information system. The integrated information system is proving to be a suitable model based on web service platform for healthcare data and service integration.

A Building Method of Security Vulnerability Measurement Framework under u-Healthcare System Traffic Domain Environment Based on USN (USN기반 u-Healthcare 시스템 트래픽도메인 환경에서의 보안위험도 평가체계 설계방안)

  • Noh, Si-Choon
    • Convergence Security Journal
    • /
    • v.11 no.3
    • /
    • pp.39-46
    • /
    • 2011
  • Smart environment of health information technology, u-Healthcare architecture, ad-hoc networking and wireless communications environment are major factors that increase vulnerability of u-healthcare information systems. Traffic domain is the concept of network route that identifies the u-Healthcare information systems area as the traffic passing and security technologies application. The criterion of division is an area requiring the application of security technology. u-Healthcare information system domains are derived from the intranet section. the public switched network infrastructure, and networking sectors. Domains of health information systems are separated by domain vulnerability reason. In this study, domain-specific security vulnerability assessment system based on the USN in u-Healthcare system is derived. The model used in this study suggests how to establish more effective measurement USN-based health information network security vulnerability which has been vague until now.

Determinants of Satisfaction in the Usage of Healthcare Information Systems by Hospital Workers in Hyderabad, India: Neural Network and SEM Approach

  • Surya Neeragatti;Ranjit Kumar Dehury
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.934-956
    • /
    • 2023
  • This study focuses on the adoption of Healthcare Information System (HIS) in India's healthcare services, which has led to an increased use of HIS software for managing patient information in hospitals. The study aims to evaluate the factors that influence hospital workers' satisfaction with HIS usage and its impact on their intention to continue in the use of HIS. Primary data was collected through a survey questionnaire from 265 hospital workers. A new framework was developed, and Structural Equation Modeling (SEM) was used for analysis. Sensitivity analysis was also conducted on demographic data using an Artificial Neural Network (ANN) approach. The results indicated that all hypotheses were significant (p < 0.05). Effort expectancy was the most significant factor influencing hospital workers' satisfaction (p < 0.01). Sensitivity analysis showed that education (Model-A) and experience in use of HIS (Model-B) were the most important factors. The study contributes by proposing a new theoretical framework and extending the previous research on HIS usage satisfaction. Overall, the study highlights the importance of easiness and usefulness in predicting HIS usage satisfaction.

The Role of Logistics Management Information Systems in Sustaining Healthcare Infrastructure in Rural Kazakhstan

  • Shynar KOSSYMBAYEVA;Umirzak SHUKEYEV;Gulnara KUSHEBINA;Azhar KIZIMBAYEVA;Galiya BERMUKHAMEDOVA;Zhanna BULKHAIROVA
    • Journal of Distribution Science
    • /
    • v.22 no.10
    • /
    • pp.13-30
    • /
    • 2024
  • Purpose: This study aims to investigate the role of Logistics Management Information Systems (LMIS) in supporting healthcare infrastructure in rural Kazakhstan, and to identify the benefits and challenges of implementing LMIS in these settings. Methodology: A mixed-methods approach was used, combining both qualitative and quantitative data. A survey of healthcare professionals was conducted to gather data on current practices and challenges, while interviews with stakeholders provided additional insights into the potential benefits and limitations of LMIS. A literature review on LMIS in healthcare was also conducted to inform the study. Results: The study found that Logistics Management Information Systems (LMIS) can improve rural healthcare by enhancing resource allocation, patient care, and decision-making. However, challenges include infrastructure limitations, training needs, data privacy concerns, and financial constraints. Addressing these challenges can unlock LMIS's potential to transform rural healthcare. Conclusion: This study demonstrates the potential of LMIS to improve healthcare access and quality in rural Kazakhstan. While there are implementation challenges, these can be addressed through targeted investments in infrastructure, training, and data security. The findings of this study have important implications for policymakers, healthcare professionals, and other stakeholders seeking to improve healthcare outcomes in rural areas.

A Secure Healthcare System Using Holochain in a Distributed Environment

  • Jong-Sub Lee;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.261-269
    • /
    • 2023
  • We propose to design a Holochain-based security and privacy protection system for resource-constrained IoT healthcare systems. Through analysis and performance evaluation, the proposed system confirmed that these characteristics operate effectively in the IoT healthcare environment. The system proposed in this paper consists of four main layers aimed at secure collection, transmission, storage, and processing of important medical data in IoT healthcare environments. The first PERCEPTION layer consists of various IoT devices, such as wearable devices, sensors, and other medical devices. These devices collect patient health data and pass it on to the network layer. The second network connectivity layer assigns an IP address to the collected data and ensures that the data is transmitted reliably over the network. Transmission takes place via standardized protocols, which ensures data reliability and availability. The third distributed cloud layer is a distributed data storage based on Holochain that stores important medical information collected from resource-limited IoT devices. This layer manages data integrity and access control, and allows users to share data securely. Finally, the fourth application layer provides useful information and services to end users, patients and healthcare professionals. The structuring and presentation of data and interaction between applications are managed at this layer. This structure aims to provide security, privacy, and resource efficiency suitable for IoT healthcare systems, in contrast to traditional centralized or blockchain-based systems. We design and propose a Holochain-based security and privacy protection system through a better IoT healthcare system.

Security Concerns on e-Healthcare System with Countermeasures Applied

  • Bruce, Ndibanje;Kim, Hyun-Ho;Park, JeaHoon;Kim, ChangKyun;Lee, HoonJae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.256-259
    • /
    • 2013
  • Data and network security for e-Healthcare Systems are a primary concern due to the easiest deployment area accessibility of the sensor devices. Furthermore, they are often interacting closely in cooperation with the physical environment and the surrounding people, where such exposure increases security vulnerabilities in cases of improperly managed security of the information sharing among different healthcare organizations. Hence, healthcare-specific security standards such as authentication, data integrity, system security and internet security are used to ensure security and privacy of patients' information. This paper discusses security threats on e-Healthcare Systems where an attacker can access both data and network using masquerade attack. Moreover, an efficient and cost effective approach for countermeasures is discussed for the delivery of secure services.

  • PDF