• Title/Summary/Keyword: Healthcare Decision Processes

Search Result 11, Processing Time 0.014 seconds

Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow (시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리)

  • Kang, Ji-Soo;Chung, Kyungyong;Jung, Hoill
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2021
  • In this paper, we propose health risk management using feature extraction and cluster analysis considering time flow. The proposed method proceeds in three steps. The first is the pre-processing and feature extraction step. It collects user's lifelog using a wearable device, removes incomplete data, errors, noise, and contradictory data, and processes missing values. Then, for feature extraction, important variables are selected through principal component analysis, and data similar to the relationship between the data are classified through correlation coefficient and covariance. In order to analyze the features extracted from the lifelog, dynamic clustering is performed through the K-means algorithm in consideration of the passage of time. The new data is clustered through the similarity distance measurement method based on the increment of the sum of squared errors. Next is to extract information about the cluster by considering the passage of time. Therefore, using the health decision-making system through feature clusters, risks able to managed through factors such as physical characteristics, lifestyle habits, disease status, health care event occurrence risk, and predictability. The performance evaluation compares the proposed method using Precision, Recall, and F-measure with the fuzzy and kernel-based clustering. As a result of the evaluation, the proposed method is excellently evaluated. Therefore, through the proposed method, it is possible to accurately predict and appropriately manage the user's potential health risk by using the similarity with the patient.