• Title/Summary/Keyword: Health of mechanical parts

Search Result 27, Processing Time 0.024 seconds

A Study on the Dew Condensation According to the Operational Conditions of a Heat-Recovery Ventilator (전열교환 환기시스템의 운전 상태에 따른 결로 발생에 관한 연구)

  • Jeon, Byung-Heon;Kim, Jong-Won;Lee, Seung-Kap;Lee, Young-Ju;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.529-533
    • /
    • 2013
  • Heat-recovery ventilators are being adopted in most newly built apartment houses for energy reduction and indoor environment improvement. In winter, however, the dew condensation resulting from the difference between the indoor and outdoor temperatures may reduce the ventilator's performance and threaten the health of indoor residents. This study analyzes the occurrence of dew condensation according to the ventilator's operational conditions and the changes of temperature and products. The experimental results show that condensations is formed at $26^{\circ}C$ and 60%R.H, which is an unfavorable climatic condition, and when the damper is not closed tightly. Therefore it is important to ensure damper performance to prevent back flow.

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

Mechanical strength of FBG sensor exposed to cyclic thermal load for structural health monitoring

  • Kim, Heonyoung;Kang, Donghoon;Kim, Dae-Hyun
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.335-340
    • /
    • 2017
  • Fiber Bragg grating (FBG) sensors are applied to structural health monitoring (SHM) in many areas due to their unique advantages such as ease of multiplexing and capability of absolute measurement. However, they are exposed to cyclic thermal load, generally in the temperature range of $-20^{\circ}C$ to $60^{\circ}C$, in railways during a long-term SHM and the cyclic thermal load can affect the mechanical strength of FBGs. In this paper, the effects of both cyclic thermal load and the reflectivity of FBGs on the mechanical strength are investigated though tension tests of FBG specimens after they are aged in a thermal chamber with temperature changes in a range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Results from tension tests reveal that the mechanical strength of FBGs decreases about 8% as the thermal cycle increases to 100 cycles; the mechanical strength then remains steady until 300 cycles. Otherwise, the mechanical strength of FBGs with reflectivity of 6dB (70%) and 10dB (90%) exhibits degradation values of about 6% and 12%, respectively, compared to that with reflectivity of 3dB (50%) at 300 cycles. SEM photos of the Bragg grating parts also show defects that cause their strength degradation. Consequently, it should be considered that mechanical strength of FBGs can be degraded by both thermal cycles and the reflectivity if the FBGs are exposed to repetitive thermal load during a long-term SHM.

On the Development of a Direct-Drive SCARA Robot (직접구훈(直接驅勳) 방식(方式)의 SCARA형(型) 로봇의 개발(開發)에 관(關)하여)

  • Lee, Gwan-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.813-816
    • /
    • 1991
  • Direct-drive SCARA-type industrial robots are increasingly used in the assembly process of small mechanical parts as well as electronic components, which uses direct-drive (DD) motors instead of reduction gear-type conventional motors for the actuators of manipulator arms. There are many advantages in using DD motors for robots, such as no backlash, low friction, high mechanical stiffness capability for fast and precise arm control, and high repeatability of positioning. However, there exist a number of difficulties which must be overcome to ensure proper construction and operation; increasing effects of load veriation and nonlinear and coupling dynamics, severe vibration caused by resonance of the manipulator components and low mechanical damping, etc. In order to handle these difficulties, lots of efforts have been made such as reduction of the arm inertia and elimination of the resonance, Performance evaluation of a recently developed, domestic DD robot shows that it works excellently compared with conventional robots. It, however, requires proved reliability and price competitiveness against its foreign counterparts.

  • PDF

A Study on the Strength Characteristics and Failure Detection of Single-lap Joints with I-fiber Stitching Method (I-fiber 스티칭 공법이 적용된 Single-lap Joint의 강도 특성 및 파손 신호 검출 연구)

  • Choi, Seong-Hyun;Song, Sang-Hoon;An, Woo-Jin;Choi, Jin-Ho
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.317-322
    • /
    • 2021
  • When a complex load such as torsion, low-speed impact, or fatigue load is applied, the properties in the thickness direction are weakened through microcracks inside the material due to the nature of the laminated composite material, and delamination occurs. To prevent the interlaminar delamination, various three-dimensional reinforcement methods such as Z-pinning and stitching, and structural health monitoring techniques that detect the microcrack of structures in real time have been continuously studied. In this paper, the single-lap joints with I-fiber stitching process were manufactured by a co-curing method and their strengths and failure detection capability were evaluated. AE and electric resistance method were used for detection of crack and failure signal and electric circuit for signal analysis was manufactured, and failure signal was analyzed during the tensile test of a single-lap joint. From the experiment, the strength of the single lap joint reinforced by I-fiber stitching process was improved by about 44.6% compared to the co-cured single lap joint without reinforcement. In addition, as the single-lap joint reinforced by I-fiber stitching process can detect failure in both the electrical resistance method and the AE method, it has been proven to be an effective structure for failure monitoring as well as strength improvement.

Ambient vibration tests of XV century Renaissance Palace after 2012 Emilia earthquake in Northern Italy

  • Cimellaro, Gian Paolo;De Stefano, Alessandro
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.231-247
    • /
    • 2014
  • This paper focuses on the dynamic behaviour of Mirandola City Hall (a XV century Renaissance Palace) that was severely damaged during May 2012 Emilia earthquake in Northern Italy. Experimental investigations have been carried out on this monumental building. Firstly, detailed investigations have been carried out to identify the identification of the geometry of the main constructional parts as well as the mechanical features of the constituting materials of the palace. Then, Ambient Vibration Tests (AVT) have been applied, for the detection of the main dynamic features. Three output-only identification methods have been compared: (i) the Frequency Domain Decomposition, (ii) the Random Decrement (RD) and the (iii) Eigensystem Realization Algorithm (ERA). The modal parameters of the Palace were difficult to be identified due to the severe structural damage; however the two bending modes in the perpendicular directions were identified. The comparison of the three experimental techniques showed a good agreement confirming the reliability of the three identification methods.

Health monitoring of a new hysteretic damper subjected to earthquakes on a shaking table

  • Romo, L.;Benavent-Climent, A.;Morillas, L.;Escolano, D.;Gallego, A.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.485-509
    • /
    • 2015
  • This paper presents the experimental results obtained by applying frequency-domain structural health monitoring techniques to assess the damage suffered on a special type of damper called Web Plastifying Damper (WPD). The WPD is a hysteretic type energy dissipator recently developed for the passive control of structures subjected to earthquakes. It consists of several I-section steel segments connected in parallel. The energy is dissipated through plastic deformations of the web of the I-sections, which constitute the dissipative parts of the damper. WPDs were subjected to successive histories of dynamically-imposed cyclic deformations of increasing magnitude with the shaking table of the University of Granada. To assess the damage to the web of the I-section steel segments after each history of loading, a new damage index called Area Index of Damage (AID) was obtained from simple vibration tests. The vibration signals were acquired by means of piezoelectric sensors attached on the I-sections, and non-parametric statistical methods were applied to calculate AID in terms of changes in frequency response functions. The damage index AID was correlated with another energy-based damage index -ID- which past research has proven to accurately characterize the level of mechanical damage. The ID is rooted in the decomposition of the load-displacement curve experienced by the damper into the so-called skeleton and Bauschinger parts. ID predicts the level of damage and the proximity to failure of the damper accurately, but it requires costly instrumentation. The experiments reported in this paper demonstrate a good correlation between AID and ID in a realistic seismic loading scenario consisting of dynamically applied arbitrary cyclic loads. Based on this correlation, it is possible to estimate ID indirectly from the AID, which calls for much simpler and less expensive instrumentation.

Development of Hazardous Objects Detection Technology based on Metal/Non-Metal Detector (금속/비금속 복합센서기반 위험물 탐지기술 개발)

  • Yoo, Dong-Su;Kim, Seok-Hwan;Lee, Jeong-Yeob;Lee, Seok-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.120-125
    • /
    • 2014
  • Conventional handheld metal detectors use a single induction coil to detect the metallic parts of explosive objects, and the detector generates an acoustic signal from its magnetic response to a metallic object so that an operator can confirm the existence of mines. Though metal detectors have very useful detection mechanisms to find mines, it is easy to cause a high false alarm ratio due to the detection of non-explosive metallic items such as cans, nails and other pieces of metal, etc. Also, because of the physical characteristic of a metal detector it is hard to detect non-metallic objects such as mines made of wood or plastic. Furthermore, the operator must move it to the left and right slowly and repeatedly to attain enough sensor signals to confirm the existence of mines using only a monotonous acoustic signal. To resolve the disadvantages of handheld detectors, many new approaches have been attempted, such as an arrayed detector and a visualization algorithm based on metal/non-metal sensor. In this paper, we introduce a visualization algorithm with a metal/non-metal complex sensor, an arrayed metal/non-metal sensor and the their testing and evaluation.

A Study about the Separation of the materials Used in Refractory Cast Dies For Making All Ceramic Crowns (전부 주조관 제작을 위한 내화모형재 분리에 관한 연구)

  • Shin, Moo-Hak;Kim, Yeoun-Soo;Choi, Un-Jea
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.123-130
    • /
    • 1999
  • I attempted to suggest a better method to separate a refractory cast in order to solve the problems caused by bonding between refractory casts and ceramics in the firing-processing of all ceramic crowns as a part of dental prosthodontics. I emphasize the advantages and effectiveness of easy separation after firing by using the separating materials about the refractory cast dies. 1. We must not usse HF(55%) that is used as the chemical separating methods. 2. We decrease such methods as grinding, blasting, bur, and point 3. We can save time, costs and manual labors by using this methods. 4. This method regulates the expansion and constriction of heat because of the chemical reaction of the separating materials. 5. This method contribute to the breaking down without modification by minimizing the chemical and mechanical damages of the marginal and interior parts.

  • PDF

Development of Asbestos Quality Control Sample for Proficiency Analytical Testing 1 - Development of Manufacturing Apparatus and Sample Preparing Procedure for Asbestos Quality Control Sample - (석면분석 정도관리용 표준시료 개발연구 I - 석면분석 정도관리용 표준시료 제조장치 개발 및 시료제조 방법 확립 -)

  • Yi, Gwang Yong;Lee, Jong- Han;Jung, Sijeong;Park, Doo Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2009
  • Final purpose of this study was designed to develop the quality control(QC) sample for proficiency analytical testing of asbestos. This study consisted of two parts; first, development of manufacturing apparatus and sample preparing procedure for asbestos quality control(QC) sample: second, validation of the QC samples made by our developed method as asbestos proficiency analytical testing sample. The main results of the first part research are as followed We developed the apparatus for manufacturing the asbestos QC sample, consisted of filter hold, filter holder manifolder, vacuum system, and vacuum pump. The most proper filter of making the QC samples was a cellulose ester membrane filter with 25 mm diameter, pore size 0.8 um. And we presented the optimal procedure for preparing the asbestos QC sample by using the developed apparatus. We will verify the manufactured asbestos QC samples by this method, and present the validation results to confirm the reliability as a asbestos QC sample in next paper.