• Title/Summary/Keyword: Health Wearables

Search Result 9, Processing Time 0.024 seconds

Predicting the Adoption of Health Wearables with an Emphasis on the Perceived Ethics of Biometric Data

  • Tahereh Saheb;Tayebeh Saheb
    • Asia pacific journal of information systems
    • /
    • v.31 no.1
    • /
    • pp.121-140
    • /
    • 2021
  • The main purpose of this research is to understand the strongest predictors of wearable adoption among athletes with an emphasis on the perceived ethics of biometric data. We performed a word co-occurrence study of biometrics research to determine the ethical constructs of biometric data. A questionnaire incorporating the Unified Theory of Acceptance and Use of Technology (UTAUT), Health Belief Model and Biometric Data Ethics was then designed to develop a neural network model to predict the adoption of wearable sensors among athletes. Our model shows that wearable adoption's strongest predictors are perceived ethics, perceived profit, and perceived threat; which can be categorized as professional stressors. The key theoretical contribution of this paper is to extend the literature on UTAUT by developing a predictive modeling of factors affecting acceptance of wearables by athletes, and highlighting the ethical implications of athlete's adoption of wearables.

Research Trends on Healthcare Wearables Published in Korean Journals

  • Kim, Nam Soon;Do, Wol Hee
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.607-616
    • /
    • 2020
  • Health care wearables are devices that are attached to or combined with the human body to improve the health care capabilities of the human body that can be safely and adjustable according to preference. This study provided direction for future research on healthcare wearables in the field of clothing science, considering trends observed in this field from 2010 to 2019. Over the last 10 years, 812 studies have been conducted on healthcare wearables in Korea. Research has increased significantly since 2015, with a large number of articles published in this field. The research for this study was broken down into the following categories: technology development, marketing analysis, and technology analysis. The results according to the research method demonstrated that development and production methods were used most frequently, followed by trend analysis, experiment and evaluation, and survey. An analysis of keywords in the articles studied revealed that device, healthcare, big data (biometric data and database), and healthcare convergence technologies were trending. Similarly, detailed research on healthcare wearable devices and related technologies was actively being conducted. However, focusing on fiber, textiles, design, and clothing articles, in relation to the field of clothing in healthcare wearables, only 81 articles were found on this topic (10.0%), which was low compared to other studies. Therefore, it was determined that more research on healthcare wearables is necessary in the field of clothing.

Behavioral Intention to Use Wellness Wearables: A Conceptual Model Development

  • Niknejad, Naghmeh;Hussin, Ab Razak Che;Ghani, Imran
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.1-10
    • /
    • 2018
  • Wearable Technology is going to be the biggest buzzword and the next generation of digital revolution in the near future. Wearables have changed the focus of the healthcare industry to prevention programs in order to encourage individuals to be more active and to take the responsibility of their own health. Although, the intention of consumers to use wellness wearables has been growing rapidly, the number of individuals who refuses continued use of such devices increases day-by-day. Diffusion and innovation of new technology could be more efficiently gained by consumer's adoption. So, it is extremely important for providers and designers to understand the impact of positive and negative factors on consumers' intention to use wellness wearables. Moreover, a unified framework is required for better understanding of individuals' behavioral intention for using wellness wearables. Thus, the goal of this study is to identify the potential factors that influence consumers' willingness to use wellness wearables as well as proposing a unified framework based on Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) and Value-based Adoption Model (VAM) with two extra factors, perceived trust and perceived health increase. The findings of this article improves the theoretical understanding of the engaged factors in the proposed research model of the study.

Current status and future direction of digital health in Korea

  • Shin, Soo-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.311-315
    • /
    • 2019
  • Recently, digital health has gained the attention of physicians, patients, and healthcare industries. Digital health, a broad umbrella term, can be defined as an emerging health area that uses brand new digital or medical technologies involving genomics, big data, wearables, mobile applications, and artificial intelligence. Digital health has been highlighted as a way of realizing precision medicine, and in addition is expected to become synonymous with health itself with the rapid digitization of all health-related data. In this article, we first define digital health by reviewing the diverse range of definitions among academia and government agencies. Based on these definitions, we then review the current status of digital health, mainly in Korea, suggest points that are missing from the discussion or ought to be added, and provide future directions of digital health in clinical practice by pointing out certain key points.

How to Enhance Perceived Usefulness, Ease of Use, and Fit of Wearables: An Exploratory Study about the Physical Attributes of Smart Wristbands and Smartwatches

  • Shim, Soo In;Yu, Heejeong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.302-309
    • /
    • 2023
  • Wearable devices, attached to the human body, track and enhance users' activities, health, and communication. Therefore, considering ergonomic factors in product design is crucial. However, previous research has somewhat overlooked the importance of integrating ergonomic design elements into a broad spectrum of design factors. This study aims to examine the impact of physical attributes inherent in smart wristbands and smartwatches on the perceived functional value, specifically, perceived usefulness, ease of use, and fit. A survey was conducted among 289 US adults who had experience using smart wristbands or smartwatches. The collected data were analyzed using descriptive statistics, factor analysis, Cronbach's alpha, t-test, MANOVA, and regression analysis in SPSS version 29. The results showed that the shape of the front display significantly influenced perceived ease of use, and the product's weight had a substantial impact on both perceived ease of use and fit. Furthermore, distinct technical features on the front display had varied effects on perceived usefulness, ease of use, and fit. Notably, the presence of activity tracking, alarm, and calendar functionalities led to distinct differences in ease of use and fit. Features such as distance tracking, phone call, social media notifications, text messaging, and time display functions showed significant influences on the perception of fit. These findings provide insights into the physical values of smart wristbands and smartwatches as perceived by users.

Economic application of structural health monitoring and internet of things in efficiency of building information modeling

  • Cao, Yan;Miraba, Sepideh;Rafiei, Shervin;Ghabussi, Aria;Bokaei, Fateme;Baharom, Shahrizan;Haramipour, Pedram;Assilzadeh, Hamid
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.559-573
    • /
    • 2020
  • One of the powerful data management tools is Building Information Modeling (BIM) which operates through obtaining, recalling, sharing, sorting and sorting data and supplying a digital environment of them. Employing SHM, a BIM in monitoring systems, would be an efficient method to address their data management problems and consequently optimize the economic aspects of buildings. The recording of SHM data is an effective way for engineers, facility managers and owners which make the BIM dynamic through the provision of updated information regarding the occurring state and health of different sections of the building. On the other hand, digital transformation is a continuous challenge in construction. In a cloud-based BIM platform, environmental and localization data are integrated which shape the Internet-of-Things (IoT) method. In order to improve work productivity, living comfort, and entertainment, the IoT has been growingly utilized in several products (such as wearables, smart homes). However, investigations confronting the integration of these two technologies (BIM and IoT) remain inadequate and solely focus upon the automatic transmission of sensor information to BIM models. Therefore, in this composition, the use of BIM based on SHM and IOT is reviewed and the economic application is considered.

EMS Ventilation Belt Using Stretch Sensor Effect on Respiratory Activation (스트레치 센서를 활용한 EMS 복압벨트가 호흡 활성화에 미치는 영향)

  • Kim, Dae-Yeon;Park, Jin-hee;Kim, Joo-yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.69-78
    • /
    • 2021
  • The development of smart healthcare wearables for health is accelerating. Among them, many wearable products using EMS electrical stimulation, which is one of the active research fields, have been released. However, the EMS wearable, which has been studied or released, is released in a comprehensive full-body suit that does not focus on muscle segmentation or a belt that covers the entire abdomen. Therefore, this study intends to use two breathing methods by applying an EMS pattern that subdivides specific muscles and attach a stretch sensor that can measure breathing to the abdominal pressure belt. The measurement method was conducted by inhaling and exhaling, and the subjects were 10 men in their 20s with healthy bodies. As a result of this study, the sensor's sensitivity was 5 and 3 mm, and the basic sensor in both thoracic and abdominal breathings and the EMS abdominal pressure belt showed improved respiration activation after applying electrical stimulation before and after application. It is concluded that, because of the two patterns produced based on the physical function, the difference in respiration activation effect and sensitivity between sensors could be confirmed with three sensors rather than not applying electrical stimulation suitable for the respiration method. Based on the results of this study, a follow-up study aims to develop breathing smart clothing that can be monitored in real time in clothing-type wearable products that incorporate EMS patterns and stretch sensors.

Design and Operation of Self-Powered Arduino System for Solar Energy Harvesting (태양에너지 하베스팅을 위한 자가발전 아두이노 시스템의 설계 및 동작)

  • Yoon, Il Pyung;Myeong, Cho Seung;An, Ji Yong;Oh, Seok Jin;Min, Kyeong-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.483-487
    • /
    • 2022
  • In this paper, we design a self-powered Arduino system for solar energy harvesting and explain its operation. To perform the operation, the Arduino system senses the amount of solar energy that changes every moment and adjusts the ratio of the active mode and sleep mode operation time according to a given solar light intensity. If the intensity of sunlight is strong enough, the Arduino system can be continuously driven in active mode and receive sufficient power from sunlight. If not, the system can run in sleep mode to minimize power consumption. As a result, it can be seen that energy consumption can be minimized by reducing power consumption by up to 81.7% when using sleep mode compared to continuously driving active mode. Also, when the light intensity is at an intermediate level, the ratio between the active mode and the sleep mode is appropriately adjusted according to the light intensity to operate. The method of self-control of the operating time ratio of active mode and sleep mode, proposed in this paper, is thought to be helpful in energy-efficient operation of the self-powered systems for wearables and bio-health applications.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.