• 제목/요약/키워드: Health Facilities

검색결과 2,382건 처리시간 0.024초

광주시 대기오염물질 배출량 변화추이에 관한 연구 (A study on the air pollutant emission trends in Gwangju)

  • 서광엽;신대윤
    • 환경위생공학
    • /
    • 제24권4호
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

전국 종합병원 방사선사의 개인피폭선량에 대한 고찰 (A Review of Personal Radiation Dose per Radiological Technologists Working at General Hospitals)

  • 정홍량;임청환;이만구
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제28권2호
    • /
    • pp.137-144
    • /
    • 2005
  • 본 연구는 1998년부터 2002년도까지 전국 16개시 도 44개 종합병원에서 근무하고 있는 최근 5년간 방사선사의 개인평균피폭선량을 측정하여 지역별, 연도별, 병원별로 비교 분석 하였고, 방사선 장비 및 시설의 차이에서 발생될 수 있는 근무환경과 촬영건수의 표준화를 통하여 향후 체계적이고 합리적인 방사선사의 피폭선량 관리가 이루어질 수 있는 기초 자료를 제공하는 목적으로 분석하였다. 5년간 방사선사의 지역별 전체평균피폭선량은 1.61 mSv이었고, 지역별로 보면 대구가 4.74 mSv로 가장 높으며 강원이 4.65 mSv, 경기가 2.15 mSv로 높은 순으로 나타났으며, 가장 낮은 지역은 충북이 0.91 mSv이고 다음이 제주 0.94 mSv, 부산이 0.97 mSv 순으로 나타났다. 5년간 연도별 평균선량은 2000년도가 1.80 mSv로 가장 높게 나타났으며, 2002년이 1.77 mSv, 1999년 1.55 mSv, 2001년 1.50 mSv, 1998년이 1.36 mSv 순으로 나타났으며, 연도별, 지역별 평균피폭선량은 2001년도는 대구지역이 1998년, 1999년, 2000년, 2002년은 강원지역이 가장 높게 나타났고, 평균피폭선량이 1.0 mSv 이하로 나타난 지역은 1998년에는 제주, 충북, 울산, 1999년 울산, 경북, 제주, 2000년 충북, 2001년 경북, 전북, 2000년에는 인천, 전북, 제주로 나타났다. 병원별 피폭선량은 대구의 KMH가 가장 높게 나타났고, 다음으로 강원의 GAH, 서울의 CAH 순으로 높게 나타났으며, 피폭선량이 낮은 병원은 전남의 YSH가 가장 낮고, 경남의 GNH, 충남의 DKH 순으로 나타났다.

  • PDF