• Title/Summary/Keyword: Headliner

Search Result 5, Processing Time 0.021 seconds

Recycling of Sound Insulation Headliner Waste Material (흡음재 폐기물의 재활용 방안)

  • Hong, Young-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3089-3095
    • /
    • 2013
  • The headliner was made of polyurethane(PU) and glass fiber(GF) composite materials are widely used as a sound insulation material. A large amount of waste materials occurs as a by-product in the headliner manufacturing process. In order to efficiently reuse the headliner waste materials, separation process of the components are very necessary. According to the results of thermal analysis, weight loss showed increase in the order polyurethane foam> non-foaming polyurethane> non-woven fabric> 1st layer> glass fiber in the range of up to $400^{\circ}C$. Analysis of the DSC characteristics, HDPE, LLDPE, PP, and Master Batch by adding additives the wasted scrap. As a result, except for the PP, there was no exothermic transition due to the crystallization.

Physical and Mechanical Properties of Wood Fiber-Polypropylene Fiber Composite Panel

  • Kim, Jee-Woong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.36-46
    • /
    • 2001
  • This study was to find a way of reusing wood and plastic wastes, which considered as a troublesome problem to be solved in this age of mass production and consumption, in manufacturing wood fiber-polypropylene fiber composite panel. And the feasibility of this composite panel as a substitute for existing headliner base panel of automobile was also discussed, especially based on physical and mechanical performance. Nonwoven web composite panels were made from wood fiber and polypropylene fiber formulations of 50 : 50, 60 : 40, and 70 : 30, based on oven-dry weight, with densities of 0.4, 0.5, 0.6, and 0.7 g/$cm^3$. At the same density levels, control fiberboards were also manufactured for performance comparison with the composite panels. Their physical and mechanical properties were tested according to ASTM D 1037-93. To elucidate thickness swelling mechanism of composite panel through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. Test results in this study showed that nonwoven web composite panel from wood fibers and polypropylene fibers had superior physical and mechanical properties to control fiberboard. In the physical properties of composite panel, dimensional stability improved as the content of polypropylene fiber increased, and the formulation of wood fiber and polypropylene fiber was considered to be a significant factor in the physical properties. Water absorption decreased but thickness swelling slightly increased with the increase of panel density. In the mechanical properties of composite panel, the bending modulus of rupture (MOR) and modulus of elasticity (MOE) appeared to improve with the increase of panel density under all the tested conditions of dry, heated, and wet. The formulation of wood fiber and polypropylene fiber was considered not to be a significant factor in the mechanical properties. All the bending MOR values under the dry, heated, and wet conditions met the requirements in the existing headliner base panel of resin felt.

  • PDF

DFSS case study for the automobile safety regulation FMVSS201 (자동차 안전규정 대응을 위한 DFSS 적용사례)

  • Park, Jong-Geun;Baik, Jai-Wook
    • Journal of Applied Reliability
    • /
    • v.10 no.3
    • /
    • pp.161-169
    • /
    • 2010
  • Automobiles have become part of our lives in modern society. But since they can be detrimental once problems occur on the road safety requirements are stringent. In this paper DFSS procedure is applied to the establishment of headliner safety. Specifically, IDDOV is employed where problems are identified, areas for development clarified, optimization realized, and finally optimal conditions verified at the final stage.

Study on Coupled Resonance Frequencies and Acoustic Responses in a 3-D Acoustic Cavity with the Air-gap for Safer Driving Condition

  • Kang, Sang-Wook
    • International Journal of Safety
    • /
    • v.5 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • An investigation was carried out to determine the effect of the thickness of the air-gap installed between the roof metal sheet and the headliner on booming noise in passenger cars. In addition, a way of offering quieter driving condition to drivers and passengers was studied. It was found that a very thin air-gap corresponding to approximately 3/100 of the height of the passenger compartment causes noticeable change in the coupled resonance frequencies and acoustic responses. Furthermore, a guideline is proposed for determining an optimal air-gap thickness during design stage of the air-gap beneath the roof metal sheet for reducing booming noise.

Noise Reduction Characteristics of a High-performance Air-gap Resonator (고효율 에어갭 공명기의 소음 저감 특성)

  • Kang, Sang-Wook;Lee, Jang-Moo;Lim, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.118-124
    • /
    • 2004
  • The objective of the paper is to demonstrate the noise reduction characteristics of an air-gap resonator, which is composed of an air gap and a partition sheet. By means of installing the air-gap resonator in an enclosed cavity, acoustic resonance can be effectively suppressed using a small space. In particular, it is revealed from a simple, one-dimensional model that the air-gap resonator serves as the Helmholtz resonator that generally absorbs acoustic resonance energy at its resonance frequency. As a result, the air-8ap resonator also has a resonance frequency, which can be predicted with a simple frequency equation derived in the paper. Finally, verification experiments show that the air-gap resonator can be effectively designed by predicting a reasonable gap thickness using the simple frequency-equation.