• Title/Summary/Keyword: Headed bars

Search Result 70, Processing Time 0.022 seconds

Pullout Test of Headed Reinforcement 2: Deep Embedment

  • Choi, Dong Uk;Shin, InYong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1091-1096
    • /
    • 2003
  • Pullout tests of single headed bars using plain concrete blocks indicate that the embedment depth of $10d_b$ is in general required for the headed bars to develop pullout strength equivalent to 125% of bar yield strength. In this experimental study, test results of multiple headed bars installed in reinforced concrete column sections are presented. Test variables included embedment depth, column main reinforcement ratio, and spacing of column ties. 2D29 bars were pulled out at one time from normal strength concrete. Test results indicated that the embedment depths, column tie spacings, and column main reinforcement ratios all influenced the pullout strengths of the headed bars. When the embedment depth was not sufficient, narrow tie spacings especially resulted in increased pullout strengths of the headed bars. Test results also indicated that the embedment depth of 15㏈ was sufficient for the closely spaced two headed bars (head-to-head spacing =$6d_b$) to develop pullout strength equivalent to 125% of the bar yield strength.

  • PDF

Confinement of Columns using Headed Bars (Headed Bars를 활용한 기둥의 구속효과에 대한 연구)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • Eight full-scale columns were constructed and tested under monotonic axial compression loading to investigate the influence of headed bars on the confinement of the concrete. One column represented a column with no transverse reinforcement and another column had poor detailing and little confinement. A third column contained seismic hoops and crossties, which represented current detailing practice for significant confinement. A fourth column test is conducted to investigate the response with the seismic crossties replaced by headed bars. Two column specimens were constructed and tested with all of the transverse reinforcement provided by headed bars. These six specimens enabled an assesment of the effectiveness of headed bars in confining the concrete. It was found that the use of headed bars improved the confinement of the columns. Two additional specimens were constructed without any transverse reinforcement. These columns were later retrofitted, by drilling horizontal holes in the columns, adding special headed bars (one head fixed and the other head threaded) and then filling the drilled holes with epoxy. These retrofitted specimens with these added headed bars provided insight into the rehabilitation of older structures containing poorly detailed columns. All of the test specimens were instrumented to determine strain localization during failure and to monitor the strain in the longitudinal and transverse reinforcement.

  • PDF

An Experimental Study of Reinforced Concrete Beams with Closely-Spaced Headed Bars

  • Lam, Kah Mun;Kim, Woo-Suk;Van Zandt, Michael;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • The use of headed bars as opposed to standard 90- or 180-degree hooked bars in beam ends, beam-column joints or other steel congested areas for anchorage and bond has become more favorable due to the fact that steel congestion is often created by large bend diameters or crossties. This research mainly focuses on evaluating the code provisions regarding the use of headed bars. Nine simply supported rectangular concrete beams with headed longitudinal reinforcement were tested under a four-point monotonic loading system. The design clear spacing, which varies from 1.5 to 4.25 times the bar diameter, was the only parameter for the experimental investigation. The test results showed that the closely-spaced headed bars were capable of developing to full yield strength without any severe brittle concrete breakout cone or pullout failure. Bond along the bar was not sufficient due to the early loss of concrete integrity. However, the headed bars were effective for anchorage with no excessive moment capacity reduction. This implies that the clear spacing of about 2 times the bar diameter for headed bars may be reasonable to ensure the development of specified yield strength of headed bars and corresponding member design strength.

Test of Headed Reinforcement in Pullout II: Deep Embedment

  • Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.151-159
    • /
    • 2006
  • A total of 32 pullout tests were performed for the multiple headed bars relatively deeply embedded in reinforced concrete column-like members. The objective was to determine the minimum embedment depth that was necessary to safely design exterior beam-column joints using headed bars. The variables for the experiment were embedment depth of headed bar, center-to-center distance between adjacent heads, and amount of supplementary reinforcement. Regular strength concrete and grade SD420 reinforcing steel were used. The results of the test the indicated that a headed bar embedment depth of $10d_b$ was not sufficient to have relatively closely installed headed bars develop the pullout strength corresponding to the yield strength. All the experimental variables, influenced the pullout strength. The pullout strength increased with increasing embedment depth and head-to-head distance. It also increased with increasing amount of supplementary reinforcement. For a group of closely-spaced headed bars installed in a beam-column joint, it is recommended to use column ties at least 0.6% by volume, 1% or greater amount of column main bars, and an embedment depth of $13d_b$ or greater simultaneously, to guarantee the pullout strength of individual headed bars over 125% of $f_y$ and ductile load-displacement behavior.

An Experimental Study on the Structural Performance of Headed Bars by Lap Length and Confinement Details (겹침이음길이 및 구속 철근에 따른 헤드철근의 구조적 성능에 관한 실험적 연구)

  • Yu, Ho-Il;Lee, Yong-Taeg;Kim, Seung-Hun;Chea, Seo-Ho;Bahn, Byong-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.286-289
    • /
    • 2006
  • Headed bars have used to the anchoring of the tension or compression longitudinal bars and of the shear reinforcing bars. Recently, lap splices of headed bars are attempted to the joints of precast concrete members and to the connections between old and new concrete members. Previous Michael's experimental research showed that confinement details had an effect on the lap splice performances of headed bars. In this study, the lap splice performances of headed bars(D25) with lap length and confinement details are evaluated through the experimental works. Four specimens, of which variables were the lap length of headed bar and the type of confine details, were tested for the performance evaluation on lap splice. Test results show that the lap length confinement reinforcement improve the performance of lap splice.

  • PDF

Experimental and numerical study of headed bars embedded in RC members under tension

  • Santana, Paulo F.M.;Silva, Patricia C.S.;Ferreira, Mauricio P.;Bezerra, Luciano M.;Oliveira, Marcos H.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.531-546
    • /
    • 2022
  • Headed bars are often used when there is insufficient space for a straight or curved bar to be fully developed to ensure the transference of forces between steel and concrete in several types of connections between structural members. In such cases, the concrete breakout strength of the headed bars can be a critical point of the design and must be considered appropriately. This paper evaluates the tensile strength of headed bars embedded in reinforced concrete members, failing due to concrete breakout. Four experimental tests on headed bars embedded in slender concrete members are presented and discussed, showing that strength previsions from the design codes can be significantly conservative as they ignore the contribution from the flexural reinforcement. 3D finite element models were developed using Abaqus Unified FEA to simulate the tested specimens, and it was observed that they were able to reproduce the formation of the concrete cone accurately, besides the response and resistance observed in tests. Furthermore, the experimental, numerical, and design code resistances are compared and discussed. A new equation to evaluate the concrete cone strength of the tested headed bars is proposed, which takes into account parameters not explicitly considered in the current design equations.

Anchorage performance tests of SD700 hooked bar and headed bar with a anchorage length of 20db (20db 정착길이를 가지는 SD700 갈고리철근과 확대머리철근의 정착성능 실험)

  • Kim, Ho Young;Sim, Hye Jung
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • With the increase of the skyscraper center, the development of large-diameter and high-strength reinforcing bars is being carried out to solve the dense reinforcement. In case of the steel reinforced concrete with a small cross section such as beam-column joints, the development length becomes short when straight bars are used. Therefore, it is possible to solve the problem that the development length becomes short by using the bearing strength of the hooked bar and headed bar. In this study, the exterior beam-column joint test of SD700 hooked bar and headed bar with anchorage length of 20db was conducted to extend the development length limitation of hooked bar and headed bar. As a result of the evaluation of the anchorage strength using the design equation by KCI, the average of the [measured value]/[predicted value] ratio was 1.31 for the hooked reinforcing bars. In the case of headed bars, the average of the [measured value]/[predicted value] ratio was 1.12. In addition, in order to compare the anchorage performance of the hooked bar and the headed bar, the measured values were divided by the square root of the compressive strength of the concrete to compare the anchorage strength. Under the same conditions, the anchorage strength of headed bars was 8.5% higher than the hooked bars.

Study on the Effect on the Development Design of Headed Deformed Bars by change of ACI 318-19 (ACI 318-19 변경에 따른 확대머리철근 정착설계의 영향분석)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.110-111
    • /
    • 2019
  • In ACI 318-19 published recently, the conditions and development length equation to use the headed deformed bars were changed considerably. Although the use of the larger-diameter(No.14 and 18) headed deformed bars isn't yet permitted, the use of the high strength(80,000psi) headed deformed bars is permitted and the effect of bar-diameter($d_b$) on the development length is increased considerably. Therefore, structures using larger-diameter headed deformed bars will be expected to be affected by this code change. We will study the effect of the code change on the development design and find out the design optimization method to minimize the effect of the changed conditions and development length equation.

  • PDF

Test of Headed Reinforcement in Pullout

  • Park, Dong-Uk;Hong, Sung-Gul;Lee, Chin-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.102-110
    • /
    • 2002
  • Results of an experimental study on the pullout behavior of the headed reinforcement are presented. A total of 48 pullout tests was performed to evaluate pullout strengths and load-displacement behaviors in pullout of the headed bars. The square steel heads had gross area of 4 $A_{b}$ and thickness of $d_{b}$ The test program consisted of three pullout test groups: Simple and Edge pullout tests using plain concrete slabs, comparison of pullout performances between the standard hooks and the headed reinforcement, and pullout tests of headed reinforcement using reinforced concrete columns. Test variables included concrete strengths ( $f_{c}$' = 27.1MPa, 39.1MPa), reinforcing bar diameters (D16~D29), embedment depths (6 $d_{b}$~12 $d_{b}$), edge conditions, column reinforcement, and single-vs.-multiple bar pullout. Test results revealed that the heads effectively provided the pullout resistances of the deformed bars in tension. The load-displacement behaviors were similar between the 90-degree hooks and the headed reinforcement. When a multiple number of headed bars installed with small head-to-head spacings was pulled out, reinforcement designed to run across the concrete failure surface in a direction parallel to the headed bars helped improve the pullout performances of the headed reinforcement.t.ement.t.

  • PDF

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.