• Title/Summary/Keyword: Head-Tail Tokenization

Search Result 2, Processing Time 0.016 seconds

Korean Head-Tail Tokenization and Part-of-Speech Tagging by using Deep Learning (딥러닝을 이용한 한국어 Head-Tail 토큰화 기법과 품사 태깅)

  • Kim, Jungmin;Kang, Seungshik;Kim, Hyeokman
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.199-208
    • /
    • 2022
  • Korean is an agglutinative language, and one or more morphemes are combined to form a single word. Part-of-speech tagging method separates each morpheme from a word and attaches a part-of-speech tag. In this study, we propose a new Korean part-of-speech tagging method based on the Head-Tail tokenization technique that divides a word into a lexical morpheme part and a grammatical morpheme part without decomposing compound words. In this method, the Head-Tail is divided by the syllable boundary without restoring irregular deformation or abbreviated syllables. Korean part-of-speech tagger was implemented using the Head-Tail tokenization and deep learning technique. In order to solve the problem that a large number of complex tags are generated due to the segmented tags and the tagging accuracy is low, we reduced the number of tags to a complex tag composed of large classification tags, and as a result, we improved the tagging accuracy. The performance of the Head-Tail part-of-speech tagger was experimented by using BERT, syllable bigram, and subword bigram embedding, and both syllable bigram and subword bigram embedding showed improvement in performance compared to general BERT. Part-of-speech tagging was performed by integrating the Head-Tail tokenization model and the simplified part-of-speech tagging model, achieving 98.99% word unit accuracy and 99.08% token unit accuracy. As a result of the experiment, it was found that the performance of part-of-speech tagging improved when the maximum token length was limited to twice the number of words.

Korean Part-Of-Speech Tagging by using Head-Tail Tokenization (Head-Tail 토큰화 기법을 이용한 한국어 품사 태깅)

  • Suh, Hyun-Jae;Kim, Jung-Min;Kang, Seung-Shik
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • Korean part-of-speech taggers decompose a compound morpheme into unit morphemes and attach part-of-speech tags. So, here is a disadvantage that part-of-speech for morphemes are over-classified in detail and complex word types are generated depending on the purpose of the taggers. When using the part-of-speech tagger for keyword extraction in deep learning based language processing, it is not required to decompose compound particles and verb-endings. In this study, the part-of-speech tagging problem is simplified by using a Head-Tail tokenization technique that divides only two types of tokens, a lexical morpheme part and a grammatical morpheme part that the problem of excessively decomposed morpheme was solved. Part-of-speech tagging was attempted with a statistical technique and a deep learning model on the Head-Tail tokenized corpus, and the accuracy of each model was evaluated. Part-of-speech tagging was implemented by TnT tagger, a statistical-based part-of-speech tagger, and Bi-LSTM tagger, a deep learning-based part-of-speech tagger. TnT tagger and Bi-LSTM tagger were trained on the Head-Tail tokenized corpus to measure the part-of-speech tagging accuracy. As a result, it showed that the Bi-LSTM tagger performs part-of-speech tagging with a high accuracy of 99.52% compared to 97.00% for the TnT tagger.