• Title/Summary/Keyword: Head-Head Agreement

Search Result 214, Processing Time 0.029 seconds

Radiation Exposure Reduction in APR1400

  • Bae, C.J.;Hwang, H.R.;Matteson, D.M.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.127-135
    • /
    • 2003
  • The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities doting refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI & instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience aid engineering judgement. Therefore, with the As Low As Reasonably Achievable (ALARA) advanced design features incorporated in the design, APR1400 design is to meet its design goal with sufficient margin, that is, more than a factor of two (2), if operated on art eighteen (18) month fuel cycle.

Design and Fabrication of Multi-mode Wideband Tonpilz Transducers (다중모드 광대역 Tonpilz 트랜스듀서의 설계 및 제작)

  • Kim, Jinwook;Kim, Hoeyong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-198
    • /
    • 2013
  • In this paper, we designed a wideband Tonpilz transducer, and verified the validity of the design through experiments. The wide frequency bandwidth was achieved by coupling the fundamental longitudinal mode of the transducer with a flapping mode of the head mass. Structure of the Tonpilz transducer was optimized by means of the finite element method and genetic algorithm to achieve the widest fractional bandwidth under design constraints. The optimized structure showed a far wider -6 dB fractional bandwidth of transmitting responses than that of single mode transducers. For verification of the design result, we manufactured a transducer prototype of the designed structure and characterized its performance, which showed good agreement with the design results.

Analysis of the Axisymmetric Hydro-Mechanical Deep Drawing Process by Using the Finite Element Method (유한 요소법을 이용한 축대칭 하이드로 미케니칼 디프 드로잉 공정의 해석)

  • 양동열;김한경;이항수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.873-882
    • /
    • 1992
  • The study is concerned with the rigid-plastic element analysis for axisymmetric hydromechanical deep drawing in which the fluid flow influences the metal deformation. Due to the fluid pressure acting on the sheet material hydromechanical deep drawing is distinguished from the conventional deep drawing processes. In considering the pressure effect, the governing equation for fluid pressure is solved and the result is reflected on the global stiffness matrix. The solution procedure consists of two stages ; i.e., initial bulging of the sheet surface before the initiation of steady fluid flow in the flange and fluid-lubricated stage. The problem is decoupled between fluid analysis and analysis of solid deformation by deformation by iterative feedback of mutual computed results. The corresponding experiments are carried out for axisymmetric hydro-mechanical deep drawing of annealled aluminium sheet as well as for deep drawing. It has been shown from the experiments that the limit drawing ratio for hydro-mechanical deep drawing is improved as compared with deep drawing. The computed results are in good agreement with the experiment for variation of punch head and chamber pressure with respect to the punch travel and for distribution of thicknees strain. It is thus shown that the present method of analysis can be effectively applied to the analysis of axisymmetric hydro-mechanical deep drawing processes.

Numerical experiment on driftwood dynamics considering rootwad effect and wood collision

  • Kang, Taeun;Kimura, Ichiro;Onda, Shinichiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.267-267
    • /
    • 2019
  • Driftwood is one of serious problems in a river environment. In several countries, such as Indonesia, Japan, and Italy, the driftwood frequently appears in a river basin, and it can alter the channel bed, flow configuration by wood deposition and jam formation. Therefore, the studies related to driftwood have been actively conducted by many researchers to understand the mechanism of driftwood dynamics. In particular, wood motion by collision is one of the difficult issues in the numerical simulation because the calculation for wood collision requires significantly expensive calculation time due to small time step. Thus, this study conducted the numerical simulation in consideration of the wood motion by water flow and wood collision to understand the wood dynamics in terms of computation. We used the 2D (two-dimensional) depth-averaged velocity model, Nays2DH, which is a Eulerian model to calculate the water flow on the generalized coordinate. A Lagrangian type driftwood model, which expresses the driftwood as connected sphere shape particles, was employed to Nays2DH. In addition, the present study considered root wad effect by using larger diameter for a particle at a head of driftwood. An anisotropic bed friction was considered for the sliding motion dependent on stemwise, streamwise and motion directions. We particularly considered changeable draft at each particle and projection area by an angle between stemwise and flow directions to precisely reproduce the wood motions. The simulation results were compared with experimental results to verify the model. As a result, the simulation results showed good agreement with experimental results. Through this study, it would be expected that this model is a useful tool to predict the driftwood effect in the river flow.

  • PDF

Case study: application of NAT (New Abrasion Tester) for predicting TBM disc cutter wear and comparison with conventional methods (TBM 디스크 커터 마모 예측에 대한 NAT의 현장 적용 및 기존 방법과의 비교)

  • Kim, Dae-Young;Shin, Young-Jin;Jung, Jae-Hoon;Kang, Han-Byul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1091-1104
    • /
    • 2018
  • Wear prediction of TBM disc cutters is a very important issue during design as well as construction stages for hard rock TBMs as the cutter head intervention is directly related to the time and cost of tunneling. For that, some methods such as NTNU, CSM and Gehring models were used to predict disc cutter wear and intervention interval. There are however some problems to be addressed in these models in terms of accuracy and time for testing, so that a NAT (New Abrasion Tester) model has been developed in order to achieve simplicity and reliability together at the same time (Farrokh and Kim, 2018). On the basis, the proposed NAT model has been applied to ${\bigcirc}{\bigcirc}$ project in Korea. A comparative study was performed to compare with the conventional methods and as a result the NAT model showed a very good agreement with actual cutter life. The NAT model will be further applied to other projects to establish credibility.

The Political Environment and the President's Influence for Policy toward North Korea: Focusing on the process of 'Special Zone of Peace and Cooperation in the West Sea' policy making (대북정책 결정의 정치적 환경과 대통령의 영향력 : '서해평화협력특별지대' 정책결정 과정을 중심으로)

  • Kim, Yoon Young;Choi, Sun
    • Korean Journal of Legislative Studies
    • /
    • v.24 no.1
    • /
    • pp.31-66
    • /
    • 2018
  • The purpose of this study is to analyze the institutional factors and the political environment in which the influence of the president is limited in South Korea's decision making process of the policy toward North Korea. Although the president has the highest decision-making power over policy toward North Korea as a head of state, the president's influence is not always absolute. Many reasons, such as bureaucratic government through the separation of power, the political environment such as divided government or the remaining term of the president,and the specificity of policy act as factors limiting the president's influence on policy toward North Korea. This study analyzed the dynamics of the decision making process of the 'Special Zone for Peace and Cooperation in the West Sea' which was planned by the agreement between the two Koreas in 2007, and examined the influence of the president, limited by the institutional environment and political conditions in the process.

Molecular Identification and Morphological Description of Larvae of the Previously Unrecorded Species Cryptacanthodes bergi (Zoarcoidei: Cryptacanthodidae) collected from Gangwon Province, Korea (강원도에서 채집된 등가시치아목 1미기록종, Cryptacanthodes bergi 자어의 분자동정 및 형태기재)

  • Choi, Si-Won;Lee, Soo-Jeong;Kim, Jin-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.188-193
    • /
    • 2021
  • On March 13, 2018 two postflexion larval specimens (18.28 mm and 16.80 mm in standard length) belonging to the family Cryptacanthodidae, suborder Zoarcoidei were collected from Sokcho and Gangneung in Gangwon Province. The family Cryptacanthodidae comprises 4 species worldwide: 3 in the North Pacific Ocean and 1 in the western North Atlantic Ocean. As a result of analyzing 620 bp of the mtDNA COI region, the two postflexion larvae collected in this study were identified as Cryptacanthodes bergi by 99.5% agreement with C. bergi adult registered in NCBI. Postflexion larvae of C. bergi are compressed with large eyes and radial pectoral fins and the anus located in front of the center of the body. Melanophores were intensively distributed along the dorsal midline, except for caudal peduncle, and sporadically distributed on the back of the anus. In addition, there were limited star-like melanophores on the back of the gut. This species showed 0.058 genetic distance when compared mtDNA COI region of C. aleutensis, and it was well distinguished in the distribution pattern of black vesicles of the head, count and measurement traits. Considering the morphological and ecological characteristics of this species, we suggest a new Korean name, " Gwisin-jang-gaeng-i ".

A Study on the Behaviour Analysis and Construction Method of the Self-Supported Earth Retaining Wall (SSR) Using Landslide Stabilizing Piles (2열 H-파일을 이용한 자립식 흙막이 공법(SSR)의 거동분석 및 시공방법에 관한 연구)

  • Sim, Jae-Uk;Park, Keun-Bo;Son, Sung-Gon;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.41-54
    • /
    • 2009
  • The purpose of this research is to introduce the new temporary earth retaining wall system using landslide stabilizing piles. This system is a self-supported retaining wall (SSR) without installing supports such as tiebacks, struts and rakers. The SSR is a kind of gravity structures consisting of twin parallel lines of piles driven below excavation level, tied together at head of soldier piles and landslide stabilizing piles by beams. In order to investigate applicability and safety of this system, a series of experimental model tests were carried out and the obtained results are presented and discussed. Furthermore, the measured data from seven different sites on which the SSR was used for excavation were collected and analyzed to investigate the characteristic behavior lateral wall movements associated with urban excavations in Korea. It is observed that lateral wall movements obtained from the experimental model is in good agreement with the general trend observed by in site measurements.

Improvement of accuracy in radioactivity assessment of medical linear accelerator through self-absorption correction in HPGe detector

  • Suah Yu;Na Hye Kwon;Sang-Rok Kim;Young Jin Won;Kum Bae Kim;Se Byeong Lee;Cheol Ha Baek;Sang Hyoun Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2317-2323
    • /
    • 2024
  • Medical linear accelerators with an energy of 8 MV or higher are radiated owing to photonuclear reactions and neutron capture reactions. It is necessary to quantitatively evaluate the concentration of radioactive isotopes when replacing or disposing them. HPGe detectors are commonly used to identify isotopes and measure radioactivity. However, because the detection efficiency is generally calibrated using a standard material with a density of 1.0 g/cm3, a self-absorption effect occurs if the density of the measured material is high. In this study, self-absorption correction factors were calculated for tungsten, lead, copper, and SUS-303, which are the main materials of medical linear accelerator head parts, for each gamma-ray energy using MCNP 6.2 code. The self-absorption effect was more pronounced as the energy of the emitted gamma rays decreased and the density of the measured materials increased. These correction factors were applied to the radioactivity measurements of the in-built and portable HPGe detectors. Furthermore, compared to the surface dose rate measured by the survey meter, the accuracy of the measurements of radioactivity improved by an average of 124.31 and 100.53 % for inbuilt and portable HPGe detectors, respectively. The results showed a good agreement, with an average difference of 3.70 and 5.24 %.

Evaluation on the Accuracy of Targeting Error Correction Through the Application of Target Locating System in Robotic CyberKnife (로봇 사이버나이프에서 위치인식시스템을 이용한 Targeting Error값 보정의 정확성 평가)

  • Jeong, Young-Joon;Jung, Jae-Hong;Lim, Kwang-Chae;Cho, Eun-Ju
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Purpose: The purpose is to evaluate the accuracy of correcting the targeting error through the Target Location System (TLS) for the location change error of the reference point which arises from the movement or motion of patient during the treatment using the CyberKnife. Materials and Methods: In this test, Gafchromic MD-55 film was inserted into the head and neck phantom to analyze the accuracy of the targeting, and then the 6 MV X-ray of CyberKnife (CyberKnife Robotic Radiosurgery System G4, Accuray, US) was irradiated. End to End (E2E) program was used to analyze the accuracy of targeting, which is provided by Accuray Corporation. To compute the error of the targeting, the test was carried out with the films that were irradiated 12 times by maintaining the distance within the rage of $0{\pm}0.2\;mm$ toward x, y, z from the reference point and maintaining the angle within the rage of $0{\pm}0.2^{\circ}$ toward roll, pitch, yaw, and then with the films which were irradiated 6 times by applying intentional movement. And the correlation in the average value of the reference film and the test film were analyzed through independent samples t-test. In addition, the consistency of dose distribution through gamma-index method (dose difference: 3%) was quantified, compared, and analyzed by varying the distance to agreement (DTA) to 1 mm, 1.5 mm, 2 mm, respectively. Results: E2E test result indicated that the average error of the reference film was 0.405 mm and the standard deviation was 0.069 mm. The average error of the test film was 0.413 mm with the standard deviation of 0.121 mm. The result of independent sampling t-test for both averages showed that the significant probability was P=0.836 (confidence level: 95%). Besides, by comparing the consistency of dose distribution of DTA through 1 mm, 1.5 mm, 2 mm, it was found that the average dose distribution of axial film was 95.04%, 97.56%, 98.13%, respectively in 3,314 locations of the reference film, consistent with the average dose distribution of sagittal film that was 95.47%, 97.68%, 98.47%, respectively. By comparing with the test film, it was found that the average dose distribution of axial film was 96.38%, 97.57%, 98.04%, respectively, at 3,323 locations, consistent with the average dose distribution of sagittal film which was 95.50%, 97.87%, 98.36%, respectively. Conclusion: Robotic CyberKnife traces and complements in real time the error in the location change of the reference point caused by the motion or movement of patient during the treatment and provides the accuracy with the consistency of over 95% dose distribution and the targeting error below 1 mm.

  • PDF