• Title/Summary/Keyword: Head shape

Search Result 791, Processing Time 0.023 seconds

Lip-Synch System Optimization Using Class Dependent SCHMM (클래스 종속 반연속 HMM을 이용한 립싱크 시스템 최적화)

  • Lee, Sung-Hee;Park, Jun-Ho;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.312-318
    • /
    • 2006
  • The conventional lip-synch system has a two-step process, speech segmentation and recognition. However, the difficulty of speech segmentation procedure and the inaccuracy of training data set due to the segmentation lead to a significant Performance degradation in the system. To cope with that, the connected vowel recognition method using Head-Body-Tail (HBT) model is proposed. The HBT model which is appropriate for handling relatively small sized vocabulary tasks reflects co-articulation effect efficiently. Moreover the 7 vowels are merged into 3 classes having similar lip shape while the system is optimized by employing a class dependent SCHMM structure. Additionally in both end sides of each word which has large variations, 8 components Gaussian mixture model is directly used to improve the ability of representation. Though the proposed method reveals similar performance with respect to the CHMM based on the HBT structure. the number of parameters is reduced by 33.92%. This reduction makes it a computationally efficient method enabling real time operation.

An Experimental Study for Estimation of Head Loss Coefficients at Surcharged Combining Junction Manholes (과부하 합류맨홀에서의 손실계수 산정을 위한 실험적 연구)

  • Kim, Jung-Soo;Choi, Hyun-Soo;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.445-453
    • /
    • 2010
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze head losses at manholes, especially in case of surcharged flow. Hydraulic experimental apparatus which can change the manhole shape (square, circular) were installed for this study. In the experiments, two inflows ($Q_1,\;Q_2$) were varied from 0 to $4{\ell}$/sec and 15 combinations were tested in total. The flow ratios $Q_2/Q_3$ were varied from 0 to 1 for a total flow $Q_3$ ($Q_3=Q_1+Q_3$) of 2, 3, and $4{\ell}$/sec, respectively. The variation of head losses were strongly influenced by the lateral inflow because the head loss coefficient increases as the flow ratio $Q_2/Q_3$ increases. There was no significant difference of head loss between square manhole and circular one, and also no large variation of head loss as discharges change. The relation equations between K and $Q_2/Q_3$ were suggested in this paper.

HRTF Interpolation Using a Spherical Head Model (원형 머리 모델을 이용한 머리 전달 함수의 보간)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.333-341
    • /
    • 2008
  • In this paper, a new interpolation model for the head related transfer function (HRTF) was proposed. In the method herein, we assume that the impulse response of the HRTF for each azimuth angle is given by linear interpolation of the time-delayed neighboring impulse responses of HRTFs. The time delay of the HRTF for each azimuth angle is given by sum of the sound wave propagation time from the ears to the sound source, which can be estimated by using azimuth angle, the physical shape of the underlying head and the distance between the head and sound source, and the refinement time yielding the minimum mean square error. Moreover, in the proposed model, the interpolation intervals were not fixed but varied, which were determined by minimizing the total number of HRTFs while the synthesized signals have no perceptual difference from the original signals in terms of sound location. To validate the usefulness of the proposed interpolation model, the proposed model was applied to the several HRTFs that were obtained from one dummy-head and three human heads. We used the HRTFs that have 5 degree azimuth angle resolution at 0 degree elevation (horizontal plane). The experimental results showed that using only $30\sim40%$ of the original HRTFs were sufficient for producing the signals that have no audible differences from the original ones in terms of sound location.

A forging die design to improve the flower shape of flange bolt (플랜지 볼트의 플라워 형상 결함 개선을 위한 단조 금형설계)

  • Kim, Kwan-Woo;Lee, Geun-Tae;Cho, Hae-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.314-319
    • /
    • 2016
  • Flange bolt has a circular flange under the head that acts like a washer to distribute the clamping load over a large area. Flange bolt has usually been manufactured by cold forging. Flower shape defect occurs in the flange forging stage. This defect causes lack of dimensional accuracy and low quality. So it is needed to improve these forging defects. In this study, die design method for flower shape defect of flange bolt was suggested. In order to improve flower shape defect, inner diameter of the addition die in conventional forging process was modified. The forging process with applied modified die was simulated by commercial FEM code DEFORM-3D. The simulated results for modified die were confirmed by experimental trials with the same condition.

Spermiogenesis in the Crocidura shantungensis (작은땃쥐(Crocidura shantungensis)의 정자 변태)

  • Jeong, Seung-Don;Lee, Jung-Hun
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.31-41
    • /
    • 2007
  • The spermiogenesis of Crocidura shantungensis were studied by electron microscope. All process of spermiogenesis was divided into 11 phases 15 steps, based on the morphological features of the nucleus and cell organelles in cytoplasm of spermatids. The spermatids in Golgi and cap phases were a spherical shape. On the other hand, at the early acrosomal phase they changed into an oval shape, and the tail was created in this phase. In maturation phase, the shapes of spermatid head were thin and longish. Until step 7 the direction of spermatids head turned toward the lumen of the seminiferous tubule. From step 8 to step 15 their heads turned toward the basal lamina. In step 12, the nucleus and acrosome shown maximal elongation. From Step 13 the nucleus of spermatids became flat, simultaneously with flat expansion of the acrosome expanded, and the visible whole lengths of spermatids were tend to be shorten. Spermatid heading which arrived to step 14 was taken the final shape. The nucleus was doing the wedge shape, and the nuclear chromatins condensed completely and homogenized. In the spermiation phase, the spermatids were gradually disconnected from the cytoplasm of the Sertoli cell. In this phase, the acrosome of the spermatids were fully shorten and flat, and the spermatozoa completed the process of heading and the tailing. Considering all the results, the spermiogenesis may be useful information to analyze the differentiation of spermatogenic cells.

  • PDF

Analysis of Groundwater Flow into Underground Storage Caverns by Using a Boundary Element Model (경계요소모형을 이용한 지하 저장공동의 지하수 유입량 분석)

  • Chung, Il-Moon;Lee, Jeong-Woo;Cho, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.537-544
    • /
    • 2005
  • For the proper management of high pressurized gas storage caverns, analysis of groundwater flow field and inflow quantity according to the groundwater head, gas storage pressure and water curtain head should be performed. The finite element method has been widely used for the groundwater flow analysis surrounding underground storage cavern because it can reflect the exact shape of cavern. But the various simulations according to the change of design factors such as the width of water curtain, shape of cavern etc. are not easy when elements were set up. To overcome these limitations, two dimensional groundwater flow model is established based on the boundary element method which compute the unknown variable by using only the boundary shape and condition. For the exact computation of drainage rate into cavern, the model test is performed by using the exact solution and pre-developed finite element model. The test result shows that the model could be used as an alternative to finite element model when various flow simulations are needed to determine the optimizing cavern shape and arrangement of water curtain holes and so forth.

Experimental Investigation of Water Discharge Capability According to Shape of Sluice for Tidal Power Generation - I. Physical Experiment (조력발전용 수문 형상에 따른 통수성능에 관한 실험적 연구 - I. 수리모형실험)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyu-Sang;Kim, Duk-Gu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • An hydraulic experiment was carried out in an open channel flume in order to improve the technique of designing shape of the sluice used for tidal power generation, which greatly affects the economical efficiency of the construction of a tidal power plant. To predict the influence of change in the major design parameters relating to the sluice shape on the water discharge capability of the sluice, it was necessary to perform a precise experiment that is discriminated to previous feasibility studies or design projects. For this purpose, by installing various flow straighteners and rectifying structures inside the water supply system and the rectifying tank, the flow in the flume was stabilized as tranquil as possible. In addition, the measuring instruments and the location of installing them were carefully determined so as to minimize the errors intervened during the measurement of water discharge and water level. The method of estimating head difference between upstream and downstream of the sluice was also developed by taking account of the head loss due to the friction at the bottom and side walls in the flume.

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Sperm Ultrastructure of Bombina orientalis (무당개구리 (Bombina orientalis) 정자의 미세구조)

  • Lee, Jung-Hun;Kwon, Jung-Kyun
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.42-54
    • /
    • 2005
  • This study described the spermatozoa of the discoglossidae Bombina orientalis using light, scanning and transmission electron microscopes. Sperm head possess a crescent or leaf shape, with a moderately flexible head, and with a sharp anterior and posterior tips. The nucleus are a thick cone shaped in the widest middle part of nucleus, and a slender anterior and posterior of nuclear tips. The chromatin is not completely compact, but irregularly imbricated such as roof. Some nuclear lacunae, irregular in shape, are scattered within the nucleus. No neck and middle piece were developed. The flagellum is composed of 9+2 axoneme, axial rod and undulating membrane. The mitochondria were distributed only in cytoplasmic membrane around the nucleus. In particular, the nuclear rod contains bundles of fibers, the rod penetrating from anterior portion to the middle of the nucleus, is extended roughly two-thirds of the nucleus such as eyelashes shaped.

Music Recognition by Partial Template Matching (부분적 템플릿 매칭을 활용한 악보인식)

  • Yoo, Jae-Myeong;Kim, Gi-Hong;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.85-93
    • /
    • 2008
  • For music score recognition, several approaches have been proposed including shape matching, statistical methods, neural network based methods and structural methods. In this paper, we deal with recognition for low resolution images which are captured by the digital camera of a mobile phone. Considerable distortions are included in these low resolution images, so when existing technology is used, many problems appear. First, captured images are not stable in the sense that they contain lots of distortions or non-uniform illumination changes. Therefore, notes or symbols in the music score are damaged and recognition process gets difficult. This paper presents recognition technology to overcome these problems. First, musical note to head, stick, tail part are separated. Then template matching on head part of musical note, and remainder part is applied. Experimental results show nearly 100% recognition rate for music scores with single musical notes.