• 제목/요약/키워드: Head Vibration

검색결과 334건 처리시간 0.025초

초소형 광자기 드라이브용 HGA의 신뢰성 및 충격 해석 (Probabllistic and Shock Analysis of Head-gimbal Assembly in Micro MO Drives)

  • 오우석;박노철;양현석;박영필;홍어진
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1347-1353
    • /
    • 2004
  • With respect to the researches of the optical flying head(OFH) , the head-gimbal assembly should be analyzed to guarantee the stable fabrication and the characteristics of shock resistance. The suitable design is proved through the Probabilistic analysis of the design parameters and material properties of the model. Probabilistic analysis is a technique that be used to assess the effect of uncertain input parameters and assumptions on your analysis model. Using a probabilistic analysis you can find out how much the results of a finite elements analysis are affected by uncertainties in the model. Another factor is analysis of the dynamic shock analysis. For the mobile application, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes in contact with outer shock disturbance. the system gets critical damage in head-gimbal assembly or disk. This paper describes probabilistic and dynamic shock analysis of head-gimbal assembly in micro MO drives using OFH slider.

머리움직임이 입체음향 시스템의 머리전달함수에 미치는 영향: 구 머리전달함수의 민감도해석 (The effect of head movement on HRTF in 3D sound system: Sensitivity analysis on Sphere HRTF)

  • 김선민;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.353-358
    • /
    • 2002
  • Human's vision is mostly confined to the area in the front and we, humans heavily depend on the sense of hearing to gather information in areas out of our sight. Thus, the virtual reality system consisting of the 3D sound effect gives the user a much better sense of reality than the system without the sound effect. Virtual 3D sound technology has mainly been researched with binaural system. The conventional binaural sound systems reproduce the desired sound at two arbitrary points using two channels in 3-D space. Head movement of listener might be change the nominal acoustic transfer function and deteriorate the performance of 3D sound system based on loudspeakers that needs a crosstalk canceller. In this paper, low kinds of sensitivity functions of sphere HRTF are derived to investigate the effect of head movement on HRTF in 3D sound system. Changes of HRTF caused by rotational and translational motion of head are obtained as we calculate the derivatives of HRTF with respect to angle and distance.

  • PDF

맞춤형 머리전달함수 구현을 위한 모델링 기법 (Modeling HRTFs for Customization)

  • 신기훈;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.641-644
    • /
    • 2005
  • This study reveals some recent attempt in modeling empirically obtained B&K HATS (Head and Torso Simulator) HRTFs (Head Related Transfer Functions) to Isolate parameters that stimulate lateral and elevation perception. Localization using non-individual HRTFs often yields poor performance in synthesizing virtual sound sources when applied to a group of individuals due to differences in size and shape of head, pinnae, and torso. For realization of both effective and efficient virtual audio it is necessary to develop a method to tailor a given set of non-individual HRTFs to fit each listener without measuring his/her HRTF set. Pole-zero modeling is applied to fit HRIRs (Head Related Impulse Responses) and modeling criterions for determining suitable number of parameters are suggested for efficient modeling. Horizontal HRTFs are modeled as minimum-phase transfer functions with appropriate ITDs (Interaural Time Delay) obtained from RTF (Ray Tracing Formula) to better fit the size of listener's head for usage in simple virtualizer algorithms without complex regularization processes. Result of modeling HRTFs in the median plane is shown and parameters responsible for elevation perception are isolated which can be referred to in the future study of developing customizable HRTFs.

  • PDF

Sound Source Localization using HRTF database

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.751-755
    • /
    • 2005
  • We propose a sound source localization method using the Head-Related-Transfer-Function (HRTF) to be implemented in a robot platform. In conventional localization methods, the location of a sound source is estimated from the time delays of wave fronts arriving in each microphone standing in an array formation in free-field. In case of a human head this corresponds to Interaural-Time-Delay (ITD) which is simply the time delay of incoming sound waves between the two ears. Although ITD is an excellent sound cue in stimulating a lateral perception on the horizontal plane, confusion is often raised when tracking the sound location from ITD alone because each sound source and its mirror image about the interaural axis share the same ITD. On the other hand, HRTFs associated with a dummy head microphone system or a robot platform with several microphones contain not only the information regarding proper time delays but also phase and magnitude distortions due to diffraction and scattering by the shading object such as the head and body of the platform. As a result, a set of HRTFs for any given platform provides a substantial amount of information as to the whereabouts of the source once proper analysis can be performed. In this study, we introduce new phase and magnitude criteria to be satisfied by a set of output signals from the microphones in order to find the sound source location in accordance with the HRTF database empirically obtained in an anechoic chamber with the given platform. The suggested method is verified through an experiment in a household environment and compared against the conventional method in performance.

  • PDF

승차감 평가를 위한 수직 방향의 인체 진동 모델 개발 (Development of Vertical Biomechanical Model for Evaluating Ride Quality)

  • 조영건;박세진;윤용산
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.269-279
    • /
    • 2000
  • This paper deals with the development of biomechanical model on a seat with backrest support in the vertical direction. Four kinds of biomechanical models are discussed to depict human motion. One DOF model mainly describes z-axis motion of hip, two and three DOF models describe z-axis of hip and head, and while nine DOF model suggested in this study represents more motion than the otehr model. Three kinds of experiments were executed to validate these models. The first one was to measure the acceleration of the floor and hip surface in z-axis, the back surface in x-axis, and the head in z-axis under exciter. From this measurement, the transmissiblities of each subject were obtained. The second one was the measurement of the joint position by the device having pointer and the measurement of contact position between the human body and the seat by body pressure distribution. The third one was the measurement of the seat and back cushion by dummy. The biomechanical model parameters were obtained by matching the simulated to the experimental transmissiblities at the hip, back, and head.

  • PDF

마이크로 광디스크 드라이브 서스펜션의 최적 설계 (Optimal Design of Suspension for Micro Optical Disk Drive)

  • 전준호;전정일;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.570-575
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly (HSA). It is important factor to allow broader bandwidths for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies in tracking direction. Initial model was designed and the design parameter was defined to the model. The mode frequency variation for the change of design parameter was observed by modal analysis using the finite element method(FEM). The sensitivity matrix was calculated from the observed data and so through sensitivity analysis, an optimized ODD suspension was designed to have the higher resonant frequency than the initial model.

  • PDF

압전 작동기를 이용한 새로운 디스펜싱 시스템 설계 (Design of a New Dispensing System Featuring Piezoelectric Actuator)

  • 구오흥;최민규;윤보영;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.739-745
    • /
    • 2006
  • This paper presents a novel type of hybrid dispensing head for IC fabrication and surface mount technology. The proposed mechanism consists of solenoid valve and piezoelectric stack as actuators, and provides positive-displacement and jet dispensing. The positive-displacement dispensing can produce desired adhesive amount without viscosity effect, while the jet dispensing can produce high precision adhesive amount. In order to determine the relationship between required voltage of the piezoelectric actuator and needle displacement, both static and dynamic analysis are undertaken, In addition, finite element analysis is performed in order to find optimal design parameters. Dispensing flow rate and pressure in the chamber are evaluated through fluid dynamic model.

초소형 광자기 드라이브용 HGA의 동적 충격 시뮬레이션 (Dynamic Shock Simulation of Head-gimbal Assembly in Micro MO Drives)

  • 오우석;홍어진;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.189-194
    • /
    • 2004
  • As a disk drive becomes widely used in portable environments, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes In contact with outer shock disturbance, the system gets critical damage in head-gimbal assembly or disk. This paper describes analysis of a HGA(head-gimbal assembly) in micro MO drives to shock loading during both non-operating state and operating state. A finite element model which consists of the disk, suspension, slider and air bearing was used to find structural response of micro MO drives. In the operational case. the air bearing is approximated with four linear elastic springs. The commercially available finite element solver, ANSYS/LS-DYNA, is used to simulate the shock response of the HGA in micro MO drives. In this paper, the mechanical robustness of the suspension is simuiated considering the shock responses of the HGA.

  • PDF

Bimorph PZT를 이용한 고밀도 광학헤드의 정밀위치 및 간극제어 (Precision Position and Gap Control for High Density Optical Head Using Bimorph PZT)

  • 권영기;홍어진;박태욱;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.888-893
    • /
    • 2004
  • This paper proposed a dual actuator using bimorph PZT for information storage device based on prove array NSOM(Near-field Scanning Optical Microscopy). The gap between the media and the optical head should be maintained within the optical tolerance. Therefore, a new actuator having high sensitivity is required. Bimorph PZT, which has fast access time and high sensitivity characteristic, is suitable for this precise actuating system. This paper is focused on derivation of mathematical model of dual bimorph PZT actuator and control algorithm. Hamilton's principle was used for mathematical model. The model is verified by FEA(Finite Element Analysis), and compared with experimental results. Different control algorithms were used f3r two bimorph PZT actuating same direction and opposite direction. The gap between recording media and optical head was controlled within 20nm in experiment.

  • PDF

고낙차 수력 펌프/터빈 런너에 대한 모우드 실험 (Modal Testing on a High Head Pump/Turbine Runner)

  • 류석주;하현천;김호종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.278-282
    • /
    • 1997
  • This paper describes results of modal testing for a high head pump-turbine runner of the Muju pumped storage power plant. The head of the pump-turbine is 601 m and the outside diameter of its runner is 4,410 mm. The modal testing was done for two conditions : 1) the runner in air ; 2) the runner in water. For both conditions, obtained are natural frequencies, corresponding mode shapes and damping ratios. From the testing, it is found that the natural frequencies of the pump-turbine runner in water is reduced approximately 40 % due to additional mass effect of the water.

  • PDF