• Title/Summary/Keyword: Haze Detection

Search Result 17, Processing Time 0.02 seconds

Sharpness-aware Evaluation Methodology for Haze-removal Processing in Automotive Systems

  • Hwang, Seokha;Lee, Youngjoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.390-394
    • /
    • 2016
  • This paper presents a new comparison method for haze-removal algorithms in next-generation automotive systems. Compared to previous peak signal-to-noise ratio-based comparisons, which measure similarity, the proposed modulation transfer function-based method checks sharpness to select a more suitable haze-removal algorithm for lane detection. Among the practical filtering schemes used for a haze-removal algorithm, experimental results show that Gaussian filtering effectively preserves the sharpness of road images, enhancing lane detection accuracy.

Haze Scene Detection based on Hue, Saturation, and Dark Channel Distributions

  • Lee, Y.;Yang, Seungjoon
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.229-234
    • /
    • 2020
  • Dehazing significantly improves image quality by restoring the loss of contrast and color saturation for images taken in the presence. However, when applied to images not taken according to the prior information, dehazing can cause unintended degradation of image quality. To avoid unintended degradations, we present a hazy scene detection algorithm using a single image based on the distributions of hue, saturation, and dark channel. Through a heuristic approach, we find out statistical characteristics of the distribution of hue, saturation, and dark channels in the hazy scene and make a detection model using them. The proposed method can precede the dehazing to prevent unintended degradation. The detection performance evaluated with a set of test images shows a high hit rate with a low false alarm ratio. Ultimately the proposed method can be used to control the effect of dehazing so that the dehazing can be applied to wide variety of images without unintended degradation of image quality.

Effective machine learning-based haze removal technique using haze-related features (안개관련 특징을 이용한 효과적인 머신러닝 기반 안개제거 기법)

  • Lee, Ju-Hee;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.83-87
    • /
    • 2021
  • In harsh environments such as fog or fine dust, the cameras' detection ability for object recognition may significantly decrease. In order to accurately obtain important information even in bad weather, fog removal algorithms are necessarily required. Research has been conducted in various ways, such as computer vision/data-based fog removal technology. In those techniques, estimating the amount of fog through the input image's depth information is an important procedure. In this paper, a linear model is presented under the assumption that the image dark channel dictionary, saturation ∗ value, and sharpness characteristics are linearly related to depth information. The proposed method of haze removal through a linear model shows the superiority of algorithm performance in quantitative numerical evaluation.

A Framework for Object Detection by Haze Removal (안개 제거에 의한 객체 검출 성능 향상 방법)

  • Kim, Sang-Kyoon;Choi, Kyoung-Ho;Park, Soon-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.168-176
    • /
    • 2014
  • Detecting moving objects from a video sequence is a fundamental and critical task in video surveillance, traffic monitoring and analysis, and human detection and tracking. It is very difficult to detect moving objects in a video sequence degraded by the environmental factor such as fog. In particular, the color of an object become similar to the neighbor and it reduces the saturation, thus making it very difficult to distinguish the object from the background. For such a reason, it is shown that the performance and reliability of object detection and tracking are poor in the foggy weather. In this paper, we propose a novel method to improve the performance of object detection, combining a haze removal algorithm and a local histogram-based object tracking method. For the quantitative evaluation of the proposed system, information retrieval measurements, recall and precision, are used to quantify how well the performance is improved before and after the haze removal. As a result, the visibility of the image is enhanced and the performance of objects detection is improved.

Enhancement of Object Detection using Haze Removal Approach in Single Image (단일 영상에서 안개 제거 방법을 이용한 객체 검출 알고리즘 개선)

  • Ahn, Hyochang;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2018
  • In recent years, with the development of automobile technology, smart system technology that assists safe driving has been developed. A camera is installed on the front and rear of the vehicle as well as on the left and right sides to detect and warn of collision risks and hazards. Beyond the technology of simple black-box recording via cameras, we are developing intelligent systems that combine various computer vision technologies. However, most related studies have been developed to optimize performance in laboratory-like environments that do not take environmental factors such as weather into account. In this paper, we propose a method to detect object by restoring visibility in image with degraded image due to weather factors such as fog. First, the image quality degradation such as fog is detected in a single image, and the image quality is improved by restoring using an intermediate value filter. Then, we used an adaptive feature extraction method that removes unnecessary elements such as noise from the improved image and uses it to recognize objects with only the necessary features. In the proposed method, it is shown that more feature points are extracted than the feature points of the region of interest in the improved image.

Nonlinear model for estimating depth map of haze removal (안개제거의 깊이 맵 추정을 위한 비선형 모델)

  • Lee, Seungmin;Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.492-496
    • /
    • 2020
  • The visibility deteriorates in hazy weather and it is difficult to accurately recognize information captured by the camera. Research is being actively conducted to remove haze so that camera-based applications such as object localization/detection and lane recognition can operate normally even in hazy weather. In this paper, we propose a nonlinear model for depth map estimation through an extensive analysis that the difference between brightness and saturation in hazy image increases non-linearly with the depth of the image. The quantitative evaluation(MSE, SSIM, TMQI) shows that the proposed haze removal method based on the nonlinear model is superior to other state-of-the-art methods.

Haze Removal of Electro-Optical Sensor using Super Pixel (슈퍼픽셀을 활용한 전자광학센서의 안개 제거 기법 연구)

  • Noh, Sang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.634-638
    • /
    • 2018
  • Haze is a factor that degrades the performance of various image processing algorithms, such as those for detection, tracking, and recognition using an electro-optical sensor. For robust operation of an electro-optical sensor-based unmanned system used outdoors, an algorithm capable of effectively removing haze is needed. As a haze removal method using a single electro-optical sensor, the dark channel prior using statistical properties of the electro-optical sensor is most widely known. Previous methods used a square filter in the process of obtaining a transmission using the dark channel prior. When a square filter is used, the effect of removing haze becomes smaller as the size of the filter becomes larger. When the size of the filter becomes excessively small, over-saturation occurs, and color information in the image is lost. Since the size of the filter greatly affects the performance of the algorithm, a relatively large filter is generally used, or a small filter is used so that no over-saturation occurs, depending on the image. In this paper, we propose an improved haze removal method using color image segmentation. The parameters of the color image segmentation are automatically set according to the information complexity of the image, and the over-saturation phenomenon does not occur by estimating the amount of transmission based on the parameters.

Image Matching Based on Robust Feature Extraction for Remote Sensing Haze Images (위성 안개 영상을 위한 강인한 특징점 검출 기반의 영상 정합)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.272-275
    • /
    • 2016
  • This paper presents a method of single image dehazing and surface-based feature detection for remote sensing images. In the conventional dark channel prior (DCP) algorithm, the resulting transmission map invariably includes some block artifacts because of patch-based processing. This also causes image blur. Therefore, a refined transmission map based on a hidden Markov random field and expectation-maximization algorithm can reduce the block artifacts and also increase the image clarity. Also, the proposed algorithm enhances the accuracy of image matching surface-based features in an remote sensing image. Experimental results confirm that the proposed algorithm is superior to conventional algorithms in image haze removal. Moreover, the proposed algorithm is suitable for the problem of image matching based on feature extraction.

Strong Haze Influence on the 3-micron Emission Features of Saturn

  • Kim, Sang Joon;Park, Jaekyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.44.3-44.3
    • /
    • 2019
  • Since the detection of 3.3-micron PAH (polycyclic aromatic hydrocarbon) and 3.4-micron aliphatic hydrocarbon features in the spectra of Titan (Bellucci et al. 2009; Kim et al. 2011) and Saturn (Kim et al. 2012), respectively, the 3.3-micron feature of gaseous CH4 has been thought to be still the important spectral feature in the 3-micron absorption structures of Titan and Saturn. However, the analyses of the 3.3-and 3.4-micron emission structures of Saturn revealed that the influence of the gaseous CH4 on the structures is rather minimal (Kim et al. 2019). We present synthetic spectra of gaseous CH4, and the PAH and aliphatic haze particles in order to show the degree of influence of their spectra on the 3.3-and 3.4-micron emission structures of Saturn, and we compare these synthetic spectra with currently available observations. We constructed these synthetic spectra using newly developed radiative transfer equations. These equations are able to address detailed radiative processes in the atmospheres containing various gases and haze particles. We expect these radiative transfer equations can also be widely applied to the investigation of radiative transfer processes and the analyses of the spectra of celestial objects such as the Earth, the Moon, planets, and interstellar nebulae.

  • PDF

An Analysis of 2D Positional Accuracy of Human Bodies Detection Using the Movement of Mono-UWB Radar

  • Kiasari, Mohammad Ahangar;Na, Seung You;Kim, Jin Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • This paper considers the ability of counting and positioning multi-targets by using a mobile UWB radar device. After a background subtraction process, distinguishing between clutters and human body signals, the position of targets will be computed using weighted Gaussian mixture methods. While computer vision offers many advantages, it has limited performance in poor visibility conditions (e.g., at night, haze, fog or smoke). UWB radar can provide a complementary technology for detecting and tracking humans, particularly in poor visibility or through-wall conditions. As we know, for 2D measurement, one method is the use of at least two receiver antennas. Another method is the use of one mobile radar receiver. This paper tried to investigate the position detection of the stationary human body using the movement of one UWB radar module.