• 제목/요약/키워드: Hazardous air pollutants(HAP)

검색결과 11건 처리시간 0.019초

산업단지 대기질 관리, HAP인가 VOC인가\ulcorner (Air Quality Management in the Industrial Estate, HAP or VOC\ulcorner)

  • 김영성
    • 한국대기환경학회지
    • /
    • 제15권4호
    • /
    • pp.513-517
    • /
    • 1999
  • Problems of secondary pollution and hazardous pollutants have rapidly come to the front in our society during the past few years. More attention should be paid to monitoring and assessment in order to identify the nature of complicated problems, but our air-quality policy is hurriedly seeking for management strategies. A typical example is air quality management in the industrial estates such as those located in Yochon and Ulsan. Yochon Industrial Estate was designated as a special air-quality management area of volatile organic compounds(VOCs) in 1996. And VOCs in the air of Ulsan Industrial Estate has been specially controlled since 1997. In this paper, however, it is suggested that hazardous air pollutants(HAPs) rather than VOCs should have been managed in the industrial estates. History of studies on organic compounds in the air of the industrial estates is reviewed. A stepwise approach for air quality management in the industrial estates is recommended.

  • PDF

자동차에서 배출되는 가스상 유해대기오염물질 (HAPs) 배출량 추정 (Estimation of Gaseous Hazardous Air Pollutants Emission from Vehicles)

  • 김정;장영기;최상진;김정수;서충열;손지환
    • 한국대기환경학회지
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Hazardous Air Pollutants (HAPs) are difficult to measure, analyze and assess for risk because of low ambient concentrations and varieties. Types of HAPs are Volatile organic compounds (VOCs), Polycyclic aromatic hydrocarbon (PAHs) and Aldehydes. HAP emissions from vehicles are a contributor to serious adverse health effects in urban areas. In this study, hazardous air pollutant emissions from road transport vehicles by Non-methane volatile organic compounds (NMVOC) weight fraction and PAHs emission factors are estimated in 2008. The top-five-most hazardous air pollutant emissions were estimated to toluene 864.3 ton/yr, acrolein 690.6 ton/yr, acetaldehyde 554.5 ton/yr, formaldehyde 498.7 ton/yr, propionaldehyde 421.6 ton/yr in 2008. The results for a cancer and non-cancer risk assessment of HAPs emissions show that the major cancer driver is formaldehyde and the non-cancer driver is acrolein.

Development of primary reference gas mixtures of 18 volatile organic compounds in hazardous air pollutants (5 nmol/mol level) and their analytical methods

  • Kang, Ji Hwan;Kim, Yong Doo;Lee, Jinhong;Lee, Sangil
    • 분석과학
    • /
    • 제34권5호
    • /
    • pp.202-211
    • /
    • 2021
  • Volatile organic compounds (VOCs) in hazardous air pollutants (HAPs) have been regulated by the Air Pollution Control Act (1978) and their atmospheric concentrations have been monitored in 39 monitor sites in Korea. However, measurement standards of volatile organic compounds (VOCs) in HAPs at ambient levels have not been established in Korea. Primary reference gas mixtures (measurement standards) at ambient levels are required for accurately monitoring atmospheric VOCs in HAPs and managing their emissions. In this study, primary reference gas mixtures (PRMs) at 5 nmol/mol were developed in order to establish primary national standards of VOCs in HAPs at ambient levels. Primary reference gas mixtures (PRMs) were prepared in pressurized aluminum cylinders with special internal surface treatment using gravimetric method. Analytical methods using gas chromatography-flame ionization detector (GC-FID) coupled with a cryogenic preconcentrator were also developed to verify the consistency of gravimetrically prepared HAP VOCs PRMs. Three different columns installed in the GC-FID were evaluated and compared for the retention times and separation of eighteen target components in a chromatogram. Results show that the HAP VOCs PRMs at 5 nmol/mol were consistent within a relative expanded uncertainty (k=2) of less than 3 % except acrylonitrile (less than 6 %) and the 18 VOCs were stable for 1 year within their associated uncertainties.

유사휘발유 사용에 의한 BTX 배출량 추정 (Estimation of BTX Emission Using Pseudo-gasoline)

  • 전소영;김정;장영기;정봉진
    • 한국대기환경학회지
    • /
    • 제28권5호
    • /
    • pp.527-537
    • /
    • 2012
  • The increasing consumption of pseudo-petroleum products (PPP) has been disturbing the national petroleum market. The use of PPP lead to tax evasion, disturbance of sound trading principles, component corrosion of cars, and explosion accident. Also, PPP have emitted hazardous air pollutants (HAP) including the carcinogenic aromatic hydrocarbons, PAHs and aldehydes more than regular-petroleum products. It thus has potentials to cause many environmental and health care problems. In this study, benzene, toluene and xylene emissions from road transport vehicles due to the use of pseudo-gasoline are estimated for the year 2008. The results of our study provide emission estimates of benzene, toluene and xylene for the year as 405, 1,711, 717 tonne/yr, respectively for regular-gasoline. BTX emissions are calculated as 452~515, 1,882~2,264 and 732~752 tonne/yr when the amount of pseudo-gasoline is estimated to account for 6~13% for regular-gasoline consumption. BTX emissions increased as much as 12~27, 10~32, 2~5% by using pseudo-gasoline. It is found that the pseudo-gasoline should be the key component to produce HAP in urban area.

대형디젤엔진의 오염물질 배출특성 (Characteristics of Exhaust Emissions from a Heavy-duty Diesel Engine)

  • 엄명도;류정호;이종태;임철수
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.20-27
    • /
    • 1999
  • The proportion of diesel vehicle is very high in this country . PM and NOx emitted from diesel-posered vehicle is severely ;affecting to be air quality . Especially, diesel particulate matters(DPM) including black smoke are hazardous air pollutants to human health and environment. In order to reduce the exhaust emissions from diesel engines, it is necessary to analyze the characteristics of exhaust emissions from diesel engines in various driving conditions. Recently, there are occasion to increase the fuel consumption rate to engine power up. So, in this study we have tested a diesel engine detached from in use -diesel vehicle and analyzed exhaust emission by driving condition and fuel dispersion rate. From this results, we will prepare the comprehensive management plan for exhaust emissions from diesel vehicles and contribute to the improvement of air pollution in urban area.

  • PDF

연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향 (Effect of Electrode Process Variables in case of Decomposition of $NO_{x}$ by SPCP)

  • 안형환;강현춘
    • 대한안전경영과학회지
    • /
    • 제1권1호
    • /
    • pp.241-258
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_{2}$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min), initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3 % for NO and 84.7 % for $NO_{2}$ were observed at the power consumptions of 19.8 and 20W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3 mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF

화력발전소 배가스 수은 배출 저감에 관한 연구 (Study on the Reduction of Mercury Emission from Flue Gas in Thermal Power Plants)

  • 장경룡;백점인;안희수;양완섭;이시훈
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 추계학술대회 논문집
    • /
    • pp.147-148
    • /
    • 2003
  • 미국을 중심으로 HAPs(Hazardous Air Pollutants: 특정대기유해물질)의 유해성이 확인되면서 TRI(Toxics Release Inventory: 유해화학물질 배출공개제도)를 제도화하여 배출 원 관리를 통해 간접적으로 배출량을 줄이는 한편, 직접적으로는 규제 기준을 마련하여 저감 기술개발을 유도하고 있다. 특히 HAPs에 포함된 물질들 가운데 수은은 환경에서 메칠수은으로 변하여 유독성이 한층 높아지고, 먹이 연쇄과정을 통해 농축되어 가장 관리가 시급히 요구되는 물질로 대두되었다. 이에 따라 미국에서는 의회를 중심으로 배출 규제에 대한 일정을 확정하고, 적정한 규제농도가 정해지는 대로 이를 시행할 예정으로 있다. (중략)

  • PDF

국내 제작된 대형 디젤산화촉매의 배출가스 성능평가 (Performance Evaluation of Domestic -made DOC for the Heavy-duty Diesel Engine)

  • 정일록;엄명도;김종춘;김태승;류정호;임철수
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.15-23
    • /
    • 1999
  • In recent years, environmental damage to urban area becomes serious problem due to the exhaust emissions by increasing the number of vehicle . Especially, diesel particulate matters(DPM) are hazardous air pollutant s to human health and environment. The reduction technologies of exhaust emissions from diesel engines are improvement of engine combustion, fuel quality and development of diesel exhaust aftertreatment. In this study, a diesel oxidation catalyst(DOC) that is one of diesel exhaust aftertreatments was made for performance evaluation . It was tested for NA and turbocharged engine by D-13 mode that currently be used for regulation driving test mode in Korea Scanning mobility particle sizer (SMPS) was used for the analysis of the particle size distribution with and w/o DOC. As the results , for NA and tubochartged engine, CO, THC, DPM was respectively reduced 85.7, 40.7,3.3% and 79.1, 53.1, 11.6% by DOC. Test results of particle size distribution was showed that particle number is 107 ~108per ㎤ , 2 $\times$105 ~5$\times$105$\mu\textrm{g}$/㎥ for weight concentration and 100~200nm for particle mean size in diesel engine and there is no effect to reduce the particle concentration by the DOC.

  • PDF

방전플라스마에 의한 NOx, SOx 분해시 메탄첨가의 영향 (Effect of CH4 Addition in Case of Decomposition of NOx, SOx by Discharge Plasma)

  • 강현춘;우인성;강안수
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.70-77
    • /
    • 2000
  • For hazardous air pollutants(HAP) such as NO, $NO_2$ and $SO_2$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(Surface induced discharge Plasma Chemical Processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min), initial concentrations(100~1,000 ppm) and additive($CH_4$) were measured and the products were analyzed with FT-IR. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3 % for NO, 84.7 % for $NO_2$ and 99 % far $SO_2$ were observed at the power consumptions of 19.8, 20 and 19W, respectively, and that decomposition efficiency decreased with increasing frequency above 20 kHz. And decomposition efficiency per unit power were 5.21 %/W for $SO_2$, 4.76 %/W for NO and 4.24 %/W for $NO_2$ and the highest decomposition efficiency was observed with $SO_2$. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. When the additive of $CH_4$ was used, decomposition efficiency was increased with increasing $CH_4$ content, and NO, $NO_2$ and $SO_2$ were almost completely decomposed with the efficiency of 99 %, 98 % and 99 %, respectively and therefore $CH_4$ was a good additive material. The optimum power for the maximum decomposition efficiency were 7.5 W for $SO_2$, 9.5 W for NO and 15.5 W for $NO_2$, respectively. Optimum power with the maximum decomposition efficiency were 9.5 W at 1,000 ppm of NO, 7~8 W at 100~500 ppm of NO and 15.5 W at all concentration range of $NO_2$ and 11.5 W at 1,000 ppm, 4.9 W at 500 ppm, 3.7 W at 100~300 ppm of $SO_2$ and power efficiency was best in these case.

  • PDF

연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향 (Effect of Electrode Process Variables in case of Decomposition of $NO_x$ by SPCP)

  • 안형환;강현춘
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 1999년도 추계학술대회
    • /
    • pp.543-563
    • /
    • 1999
  • 본 연구에서는 특수 설계된 연면방전(Surface discharge induced Plasma Chemical Process, SPCP) 반응기로부터 발생하는 플라스마에 의하여 일산화질소(NO)와 이산화질소($NO_2$)등 유해 환경오염 가스를 주파수, 유량, 농도, 전극재질 및 감은 횟수 등의 공정변수 변화에 따른 분해율, 소비전력 및 소비전압 등을 측정하여 최적의 공정조건과 최대의 분해효율을 얻고자 하였다. 표준시료로서 일산화질소와 이산화질소를 고전압발생기의 주파수(5~50kHz), 유해가스의 체류시간(1~10.5 초)과 초기농도(100~1000 ppm), 전극의 재질(W, Cu, Al), 전극의 굵기(1, 2, 3 mm)및 감은횟수(7회, 9회, 11회)에 대하여 플라스마 연면방전 반응기를 이용하여 분해효율을 구하였다. 유해가스(NO, $NO_2$)의 분해제거 실험결과, 10 kHz의 주파수와 각각 19.8와 20 W의 소비전력에서 각각 94.3, 84.7 %로 가장 높은 분해제거율을 나타내었고, 20 kHz이상에서는 주파수가 커질수록 분해율이 감소하였다. 또한 연면방전 반응기에서 유해가스의 체류시간이 길수록, 그리고 초기농도가 작을수록 분해율은 증가하였다. 방전전극에 대한 영향은 전극의 굵기가 굵을수록 분해율이 증가하여 본 실험의 경우 3 mm의 전극을 사용하였을 때 가장 높은 분해율을 나타내었고, 전극의 재질은 텅스텐을 사용하여 방전한 경우에 가장 높은 분해율을 보였으며 구리, 알루미늄의 순으로 낮아졌다. 방전전극의 감은 횟수에 대한 영향은 7회, 9회, 11회의 순으로 감은 횟수가 많을수록 분해율이 높아짐을 알 수 있었다.

  • PDF