• Title/Summary/Keyword: Hazardous Gas

Search Result 348, Processing Time 0.034 seconds

Operating Pressure Conditions for Non-Explosion Hazards in Plants Handling Propane Gas

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.493-497
    • /
    • 2020
  • Hazardous area classification is designed to prevent chemical plant explosions in advance. Generally, the duration of the explosive atmosphere is used for zone type classification. Herein, IEC code, a quantitative zone type classification methodology, was used to achieve Zone 2 NE, which indicates a practical non-explosion condition. This study analyzed the operating pressure of a vessel handling propane to achieve Zone 2 NE by applying the IEC code via MATLAB. The resulting zone type and hazardous area grades were compared with the results from other design standards, namely API and EI codes. According to the IEC code, the operating pressure of vessels handling propane should be between 101325-116560.59 Pa. In contrast, the zone type classification criteria used by API and EI codes are abstract. Therefore, since these codes could interpret excessively explosive atmospheres, care is required while using them for hazardous area classification design.

Technical/Systemic Approach to Safety Assesment of Thermoprocessing Equipment Consuming LNG for Classification of Hazardous Area (LNG를 사용하는 설비에서의 폭발위험장소 적용 및 구분에 대한 제도/기술적 접근방안)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.33-40
    • /
    • 2011
  • In the hazardous areas where explosive liquids, vapors and gases exist, electrical apparatus/equipment should have explosion-proof construction. The consuming of liquefied natural gas(LNG) has markedly increased in the industrial field, especially in aspect of some thermoprocessing equipment, boiler, dryer, furnace, annealer, kiln, regenerative thermal oxidizer(RTO) and so on. Because it has many merits, clean fuel, safety, no transportation/storage facility and so on. It is strongly recommend that the classification of hazards has to be decided to prevent and protect explosion which may occur in thermoprocessing equipment. In this paper, the operated thermoprocessing equipments in industrial area investigated and explosion risk assessment about LNG leakage from its facilities was performed through numerical calculation and computer simulation. Finally, we suggest the systemic/technical approach for safety assessments of thermoprocessing equipments consumed LNG fuel which are specially subjected to classification of hazardous area.

Fire Accident Analysis of Hazardous Materials Using Data Analytics (Data Analytics를 활용한 위험물 화재사고 분석)

  • Shin, Eun-Ji;Koh, Moon-Soo;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.47-55
    • /
    • 2020
  • Hazardous materials accidents are not limited to the leakage of the material, but if the early response is not appropriate, it can lead to a fire or an explosion, which increases the scale of the damage. However, as the 4th industrial revolution and the rise of the big data era are being discussed, systematic analysis of hazardous materials accidents based on new techniques has not been attempted, but simple statistics are being collected. In this study, we perform the systematic analysis, using machine learning, on the fire accident data for the past 11 years (2008 ~ 2018), accumulated by the National Fire Service. The analysis results are visualized and presented through text mining analysis, and the possibility of developing a damage-scale prediction model is explored by applying the regression analysis method, using the main factors present in the hazardous materials fire accident data.

A Neural Network-Based Tracking Method for the Estimation of Hazardous Gas Release Rate Using Sensor Network Data (센서네트워크 데이터를 이용하여 독성물질 누출속도를 예측하기 위한 신경망 기반의 역추적방법 연구)

  • So, Won;Shin, Dong-Il;Lee, Chang-Jun;Han, Chong-Hun;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.38-41
    • /
    • 2008
  • In this research, we propose a new method for tracking the release rate using the concentration data obtained from the sensor. We used a sensor network that has already been set surrounding the area where hazardous gas releases can occur. From the real-time sensor data, we detected and analyzed releases of harmful materials and their concentrations. Based on the results, the release rate is estimated using the neural network. This model consists of 14 input variables (sensor data, material properties, process information, meteorological conditions) and one output (release rate). The dispersion model then performs the simulation of the expected dispersion consequence by combining the sensor data, GIS data and the diagnostic result of the source term. The result of this study will improve the safety-concerns of residents living next to storage facilities containing hazardous materials by providing the enhanced emergency response plan and monitoring system for toxic gas releases.

  • PDF

Estimation of the Relative Risk of the Elderly with Different Evacuation Velocity in a Toxic Gas Leakage Accident (독성물질 누출 시 대피 속도 차이에 따른 고령자의 상대적 위험도 산정)

  • Lee, H.T.;Kwak, J.;Park, J.;Ryu, J.;Lee, J.;Jung, Seungho
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.13-21
    • /
    • 2019
  • Leakage accidents in businesses dealing with hazardous chemicals can have a great impact on the workers inside the workplace, as well as residents outside the workplace. In fact, there were cases where hazardous chemicals leaked from many businesses. As a result, the Chemicals Control Act(CCA) was enacted in 2015, the Ministry of Environment introduced an Off-site Risk Assessment(ORA). The purpose of the ORA is to secure safety from the installation of the design of the workplace facilities so that chemical accidents of hazardous chemical handling facilities do not cause human or physical damage outside the workplace. In general, the ORA qualitatively determines where a protected facility is within the scope of the accident scenario. However, elderly who belong to the sensitive group is more sensitive than the general group under the same chemical accident effect, and the extent of the damage is serious. According to data from the Korea National Statistic Office, the number of elderly people is expected to increase steadily. Therefore, a quantitative risk analysis considering the elderly is necessary as a result of a chemical accident. In this study, accident scenarios for 14 locations were set up to perform emergency evacuation due to toxic gas leakage of Cl2(Chlorine) and HF(Hydrogen Fluoride), and the effects of exposure were analyzed based on the evacuation velocity difference of age 20s and 60s. The ALOHA(Areal Locations of Hazardous Atmospheres) program was used to calculate the concentration for assessing the effects. The time of exposure to toxic gas was calculated based on the time it took for the evacuation to run from the start point to the desired point and a methodology was devised that could be applied to the risk calculation. As a result of the study, the relative risk of the elderly, the sensitive group, needs to be determined.

A Study on the Release Rate of Hazardous Materials from Liquid Pipeline (액체배관으로부터 위험물질 누출속도 산정에 관한 연구)

  • Tak Song-Su;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.81-85
    • /
    • 2002
  • This paper presents the calculation methods of liquid release rate in the transition region when hazardous materials leak from the pipeline due to an unwanted accident. For the laminar and turbulent flow region, liquid release rate from a pipeline can be calculated by using a commercial software or by using calculator based on the models(equations) suggested by Crowl and Louvar et al. However, there has been no corresponding model for the transition flow region. In this paper. we showed that the turbulent model may be used as an equation generally used in the transition region for conservative hazard analysis if safety factor $30\%$ is added to the value calculated by the turbulent model. In this regard, we first calculated the release rate from liquid pipeline in the transition region by using experimental data on Fanning friction factor depending on Reynolds number which Lap-Mou Tam et al. had introduced, then compared it with that of the laminar and turbulent models in transition region.

  • PDF

A Study on the Estimation of Landfill Gas Emission by LAEEM in KOREA (LAEEM에 의한 전국 매립가스 발생량 추정에 대한 연구)

  • 장영기;서정배
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.499-506
    • /
    • 1998
  • Recently almost wastes except recycled garbage are dumped into landfill site in Korea. Landfills are significant compounds (NMOCS) are produced. NMOCS include reactive volative organic compound (VOC) and hazardous air pollutants. LAEEM (Landfill Air Emissions Estimation Model) developed by Control Technology Center, V.S. EPA is used to estimate a mount of landfill gas from all landfills. As the result, landfill gas 4,121,000 ton, carbon dioxide 2,951,000 ton, methane 1,1120,000 ton are estimated as emissions from all landfills in Korea.

  • PDF

A Study on the Assessment of Safety Performance for Complex Installation System of Stationary Fuel Cell and Boiler (건물용 연료전지-보일러 복합설치 안전성능 평가에 관한 연구)

  • Kim, Min-Woo;Lee, Eun-Kyung;Oh, Gun-Woo;Lee, Jung-Woon;Lee, Seung-Kuk
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • Interest in renewable energy is increasing for eco-friendly use of energy, and fuel cells are being used in various ways such as houses and buildings as power generation methods that have low emissions such as $NO_X$ and $CO_2$. As the supply of fuel cells expands, more and more boilers are installed in the existing buildings, but safety management is not being performed properly. Therefore, in this study, a prior study was conducted on the status of fuel cell-boiler complex installation and related criteria, and the risk factors were analyzed according to the installation environment and structure. Based on these standards, the safety performance of the fuel cell-boiler combined installation is assessed by conducting a demonstration using the starting product of the simulated operation to derive the installation criteria (proposal) for the fuel cell-boiler combined installation. The installation criteria (proposal) include the construction and connection method of the piping according to the fuel cell-boiler complex installation.

A Study on the Improvement of Emergency Block and Diffusion Prevention System for Hazardous Chemicals Leakage (화학물질 누출에 따른 긴급 확산 방재시스템 개선 방안 연구)

  • Lee, Deok-Jae;Yun, Jeong Hyeon;Yoo, Byung-Tae
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.89-99
    • /
    • 2018
  • In the case of medium and small-sized businesses handling hazardous chemicals, emergency disaster prevention by workers, rather than a disaster prevention system using a safety device equipped with an automation system in case of a leak accident, is highly likely to occur. In order to solve these limitations, in this study investigated an emergency disaster prevention system that can be easily removed and adhered to the expected point of leakage according to the occurrence frequency of the leak during the chemical handling process.

Estimation Technique of Volatile Hazardous Air Pollutants(HAPs) Emitted from Petroleum Industrial Process/Equipment (석유정제산업 공정과 공정장비에 기인한 휘발성 유해 대기오염물질(HAPs)의 배출량 산정기법)

  • Jo, Wan Geun;Gwon, Gi Dong;Dong, Jong In;Gang, Gyeong Hui
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.703-710
    • /
    • 2004
  • Petroleum refineries have been considered as an important emission source for atmospheric volatile hazardous air pollutants(HAPs). The emission source includes petroleum refinery processes and process equipment. The control strategy for volatile HAPs requires emission estimations of these pollutants. However, systematic methods of volatile HAPs emission from petroleum refineries have not yet been established. Accordingly, present study surveyed the estimation method of volatile HAPs emitted from the petroleum refinery processes and process equipment. The emission estimation methods for the petroleum refinery processes are applied for 11 petroleum refining facilities: fluidized catalytic cracking, thermal cracking, moving bed catalytic cracking, compressed engine, blowdown system, vacuum distilled column condensator, natural gas or distilled boiler, natural gas or distilled heater, oil boiler, oil heater and flare. Four emission estimation methods applied for the petroleum refinery process equipment are as follows: average emission factor approach, screening ranges approach, EPA correlation approach and unit-specific correlation approach. The process equipment for which emission factors are available are valves, pump seals, connectors, flanges and open-ended lines.