• Title/Summary/Keyword: Hazard increase

Search Result 388, Processing Time 0.024 seconds

Use of the t-Distribution to Construct Seismic Hazard Curves for Seismic Probabilistic Safety Assessments

  • Yee, Eric
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.373-379
    • /
    • 2017
  • Seismic probabilistic safety assessments are used to help understand the impact potential seismic events can have on the operation of a nuclear power plant. An important component to seismic probabilistic safety assessment is the seismic hazard curve which shows the frequency of seismic events. However, these hazard curves are estimated assuming a normal distribution of the seismic events. This may not be a strong assumption given the number of recorded events at each source-to-site distance. The use of a normal distribution makes the calculations significantly easier but may underestimate or overestimate the more rare events, which is of concern to nuclear power plants. This paper shows a preliminary exploration into the effect of using a distribution that perhaps more represents the distribution of events, such as the t-distribution to describe data. The integration of a probability distribution with potentially larger tails basically pushes the hazard curves outward, suggesting a different range of frequencies for use in seismic probabilistic safety assessments. Therefore the use of a more realistic distribution results in an increase in the frequency calculations suggesting rare events are less rare than thought in terms of seismic probabilistic safety assessment. However, the opposite was observed with the ground motion prediction equation considered.

Blast fragility of base-isolated steel moment-resisting buildings

  • Dadkhah, Hamed;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.461-475
    • /
    • 2021
  • Strategic structures are a potential target of the growing terrorist attacks, so their performance under explosion hazard has been paid attention by researchers in the last years. In this regard, the aim of this study is to evaluate the blast-resistance performance of lead-rubber bearing (LRB) base isolation system based on a probabilistic framework while uncertainties related to the charge weight and standoff distance have been taken into account. A sensitivity analysis is first performed to show the effect of explosion uncertainty on the response of base-isolated buildings. The blast fragility curve is then developed for three base-isolated steel moment-resisting buildings with different heights of 4, 8 and 12 stories. The results of sensitivity analysis show that although LRB has the capability of reducing the peak response of buildings under explosion hazard, this control system may lead to increase in the peak response of buildings under some explosion scenarios. This shows the high importance of probabilistic-based assessment of isolated structures under explosion hazard. The blast fragility analysis shows effective performance of LRB in mitigating the probability of failure of buildings. Therefore, LRB can be introduced as effective control system for the protection of buildings from explosion hazard regarding uncertainty effect.

BENZENE AND LEUKEMIA An Epidemiologic Risk Assessment

  • Rinsky Robert A.;Smith Alexander B.;Hornung Richard;Filloon Thomas G.;Young Ronald J.;Okun Andrea H.;Landrigan Philip J.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.651-657
    • /
    • 1994
  • To assess quantitatively the association between benzene exposure and leukemia, we examined the mortality rate of a cohort with occupational exposure to benzene. Cumulative exposure for each cohort member was estimated from historical air-sampling data and, when no sampling data existed, from interpolation on the basis of existing data. The overall standardized mortality ratio (a measure of relative risk multiplied by 100) for leukemia was 337 (95 percent confidence interval, 154 to 641), and that for multiple myeloma was 409 (95 percent confidence interval, 110 to 1047). With stratification according to levels of cumulative exposure, the standardized mortality ratios for leukemia increased from 109 to 322, 1186, and 6637 with increases in cumulative benzene exposure from less than 40 parts per million-years (ppm-years), to 40 to 199, 200 to 399, and 400 or more. respectively. A cumulative benzene exposure of 400 ppm years is equivalent to a mean annual exposure of 10 ppm over a 40-year working lifetime; 10 ppm is the currently enforceable standard in the United States for occupational exposure to benzene. To examine the shape of the exposure-response relation, we performed a conditional logistic-regression analysis, in which 10 controls were matched to each cohort member with leukemia. From this model, it can be calculated that protection from benzene induced leukemia would increase exponentially with any reduction in the permissible exposure limit.

  • PDF

Research on the Safety Improvement Method for the Company' s RAMS Management Business and Public Infrastructure

  • Lee, Jong-Beom;Cho, Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.254-261
    • /
    • 2010
  • The increase in hazard level is attributed to the industrial hazard environment; complete national environmental hazards to human health include climate change. The damage level in Korea from 1993 to 2009 has exceeded the Increase In adverse environmental conditions. Priority areas of concern will include those risks that are most likely to occur and are expensive when they do take place such as accident or injury at a community pool. Therefore, in this paper, we suggest the System Engineering method for application to the railway RAMS. Recently, the requirement of high-integrity level of infrastructure has been deemed important. The systems level approach is defined through the assessment of the RAMS interactions between elements of complex system applications.

  • PDF

The Hazard Viz-platform for the Establishment of Heatwave Response Strategies (폭염 대응전략 수립을 위한 폭염위험도 시각화 플랫폼)

  • Kim, Miyun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.683-699
    • /
    • 2020
  • Recently, the earth's highest temperature is rising due to severe climate change and heat wave. In addition, due to the increase of elderly population over 65, the number of heat patients is also increasing. In particular, the elderly who live alone in poor living environments, the lower income group, and the socially disadvantaged, such as children and pregnant women, are exposed to the dangers of heat waves, so the government's practical measures are urgently needed. In this study, we will build a visualization platform for each level of heat wave and provide the necessary countermeasure solution according to the heat wave risk. "The Hazard Visualization Platform for Heatwave" provide not only simple information, but also a customized safety service for citizens to prevent heatwaves, respond to heatwaves, and utilize heat wave information.

Preliminary Hazard Analysis for a Hyperbaric Oxygen Chamber (고압 산소 치료기에 대한 예비위험분석)

  • Jeon, Tae-Bo
    • Journal of Industrial Technology
    • /
    • v.33 no.A
    • /
    • pp.3-8
    • /
    • 2013
  • Reduction of risk plays a pivotal role in the development of medical instruments. A hyperbaric oxygen chamber, as a medical device, is known to help medical therapy for diversity of diseases through provision of high purity oxygen. The use of hyperbaric oxygen is expected to increase in the future and study to rigorously examine reliability and safety is needed. We have performed risk assessment for a newly developed hyperbaric oxygen chamber in this study. We first briefly discussed the system structure and concept of risk assessment for the study. Based on the hazards identified, we performed preliminary hazard analysis for the chamber.

  • PDF

The probabilistic estimation of inundation region using a multiple logistic regression analysis (다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출)

  • Jung, Minkyu;Kim, Jin-Guk;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

A Research on the Actual Conditions of the Electric Shock Hazard of a Guard Lamp (보안등의 감전 위험성에 관한 실태조사)

  • Jang, Tae-Jun;Jung, Yeon-Ha;Roh, Young-Su;Kwak, Hee-Ro;Choi, Chung-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.32-38
    • /
    • 2005
  • In this paper, guard lamps at three areas have been investigated to understand the actual conditions of the electric shock hazard of the guard lamps. Upon the basis of the obtained data, the actual conditions of the guard lamps were precisely analyzed in terms of the electric shock hazard. As a result of the investigation, it was turned out that many guard lamps were not installed in organized ways due to the lack of legal regulations, resulting in the increase of electric shock hazard. Therefore, it is necessary, from a point of electric shock protection view, to establish the regulations of equipment installation and management, which can be specifically applied to guard lamps.