• Title/Summary/Keyword: Harvesting Time

Search Result 789, Processing Time 0.028 seconds

Barley Harvesting System by Use of Farm Machine (보리 기계화 수획체계 확립)

  • 류용환;하용웅;박무언
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.3
    • /
    • pp.261-266
    • /
    • 1984
  • To determine the optimum harvesting methods for high yield and quality, harvesting time were tested from 30 to 45 days after heading with five days intervals, using combine, binder and knap-sack type reaper (KSTR) in harvesting machines. Under the consideration of moisture contents of grain, operating time, grain loss, harvesting cost and quality, the optimum time of barley harvesting for mechanization was 35 to 40 days after heading. Combine and binder were recommended as the suitable machines for barley harvest in the operating efficiency and harvesting cost.

  • PDF

Development of a Mechanical Harvesting System for Red Pepper(I) - Surveys on Conventional Pepper Cultivation and Mechanization of Pepper Harvesting - (고추 기계수확 시스템 개발(I) - 고추 재배, 수확실태 조사 -)

  • Choi, Young;Jun, Hyun-Jong;Lee, Chung-Keun;Lee, Chae-Sik;Yoo, Soo-Nam;Suh, Sang-Ryoung;Choi, Young-Soo
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.367-372
    • /
    • 2010
  • Consumption of pepper, a major spice vegetable used for seasoning Kimchi, continues to increase, but cultivation is in decline due to shortage of rural labor in Korea. The 39.2% of total labor requirement for conventional pepper cultivation was available for harvesting work. Therefore conventional manual harvesting should be turned to mechanical harvesting for labor-saving, cost-reducing and easy work. Surveys on conventional pepper cultivation patterns, labor requirements for various pepper cultivation works, and farmers' opinions on the mechanization of pepper harvesting were conducted to obtain basic informations. The labor requirement for pepper harvesting was 954 h/ha out of a total labor requirement of 2,436 h/ha for pepper cultivation. Harvesting was the hardest work, and hiring workmen for harvesting was also difficult. Farmers preferred to develop a small-scale pepper harvester using agricultural tractor or cultivar. Most farmer agreed to change cultivation pattern for mechanization of pepper harvesting, but hesitated to adopt new one-time-harvesting pepper varieties.

DEVELOPMENT OF A 3-DOF ROBOT FOR HARVESTING LETTUCE USING MACHINE: VISION AND FUZZY LOGIC CONTROL

  • S. I. Cho;S. J. Chang;Kim, Y. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.354-362
    • /
    • 2000
  • In Korea, researches on year-round leaf vegetables production system are in progress, most of them focused on environmental control. Therefore, automation technologies for harvesting, transporting, and grading are in great demand. A robot system for harvesting lettuces, composed of a 3-DOF (degree of freedom) manipulator, an end-effector, a lettuce feeding conveyor, an air blower, a machine vision system, six photoelectric sensors, and a fuzzy logic controller, was developed. A fuzzy logic control was applied to determine appropriate grip force on lettuce. Leaf area index and height were used as input variables and voltage as an output variable for the fuzzy logic controller. Success rate of the lettuce harvesting was 94.12%, and average harvesting time was approximately 5 seconds per lettuce.

  • PDF

Development of a 2-DOF Robot System for Harvesting a Lettuce (2 자유도 상추 수확 로봇 시스템 개발)

  • 조성인;장성주;류관희;남기찬
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2000
  • In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automation technologies for harvesting , transporting and grading need to be developed. This study was conducted to develop harvesting process automation system profitable to a competitive price. 1. Manipulator and end-effector are to be designed and fabricated , and fuzzy logic controller for controlling these are to be composed. 2. The entire system constructed is to be evaluated through a performance test. A robot system for harvesting a lettuce was developed. It was composed of a manipulator with 20DOF (degrees of freedom) an end-effector, a lettuce feeding conveyor , an air blower , a machine vision device, 6 photoelectric sensors and a fuzzy logic controller. A fuzzy logic control was applied to determined appropriate grip force on lettuce. Leaf area index and height index were used as input parameters, and voltage was used as output parameter for the fuzzy logic controller . Success rate of the lettuce harvesting system was 93.06% , and average harvesting time was about 5 seconds per lettuce.

  • PDF

Multi-Tag Beamforming Scheme Based on Backscatter Communication for RF Energy Harvesting Networks (RF 에너지 하베스팅 네트워크를 위한 Backscatter 통신 기반의 다중 태그 빔포밍 기법)

  • Hong, Seung Gwan;Hwang, Yu Min;Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.60-64
    • /
    • 2016
  • In this paper, we propose a scheme for MIMO beamforming for the backscatter communication using a multi-tag to improve the efficiency of energy harvesting and the BER of received signals. We obtain a normal channel information through a communication between the H-AP and multi-tag. The H-AP sets parameters for the transmission scenario of the spatial channel model (SCM) using the obtained channel information and generates a SCM channel information. Then, the H-AP transmits signals that have optimal transmission power to increase the signal-to-interference-plus-noise ratio (SINR) to each of tags. Tags perform a backscatter communication with signals. The receiver performs a time switching technique of energy harvesting using backscatter signals from the multi-tag. Simulation results demonstrate effectiveness of the proposed scheme, and the harvesting efficiency and BER at the receiver is greatly improved.

Mechanization of Pine Cone Harvest(II) -Shearing Characteristics of Shoots of Korean Pine Trees- (잣 수확의 기계화 연구(II) -잣나무 가지의 전단 특성-)

  • Kang, W.S.;Kim, S.H.;Lee, J.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 1994
  • This reasearch was performed to provide the fundamental intonation for the mechanization of Korean pine cone harvest when the shoot shearing method is adopted. Shear force and stress of pine cone shoots were measured and analyzed for this purpose. Samples are selected along their harvesting time and tested in 17 levels of shoot diameter from 10 to 26mm with 1mm increment. 1) Shear force-deformation characteristics showed that shoot reached its rupture point after 2 to 4 of bio-yield points. It was supposed that these multiple bio-yield points were caused by the discrete compression of wood parts which are composed of water, nutrient, resin, etc. 2) Required shear force to shear shoot was proportional to the square of shoot diamter, however, shear force for shoots of early harvesting time(Aug. 31) was proportional to the shoot diameter. Variance of shear force was increased as the harvesting time was delayed. Shear forces were distributed from 468N(Aug. 31, 12mm dia) to 4153N(Aug. 31, 26mm dia) disregarding the sampling date. 3) The average shear stresses by sampling dates were 744,822, and 883N/m2, respectively, and for the earlier shoot samples shear stress was quite smaller than the others. Shear stress was proportional to shoot diameter squared, and the effect of shoot diameter on the shear stress was decreased as harvesting time was delayed.

  • PDF

Determination of Seeding and Harvesting Time in Snap Bean

  • Lee, Sang-Soon;Lee, Jeong-Dong;Hwang, Young-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.64-67
    • /
    • 2001
  • Snap bean is a new corp in Korea but believed to have a great deal of potentials for both domestic and overseas markets. The present study was performed to obtain the basic information about growth- and quality-related characteristics and to determinate the optimum seeding date and harvesting time for snap bean. Pod yield was significantly affected by seeding date. The highest pod yield was obtained from March 20 for determinate type and April 4 for indeterminate one, respectively, with the range of 13.0-23.7 t/ha. The pod length of indeterminate type was over 13cm, and the pod length was over 5 grams. The pod width for tested varieties was less than 1.0cm. Considering the pod growth characters such as pod length, pod width, and pod weight, the optimum harvesting time for immature pods of snap bean was supposed to be from 15 to 20 days after flowering. The daily yield of snap bean was begun to sharply increase from 15 days after the first flowering and the maximum yield was recorded at 30 days after flowering. For the accumulated yield, nearly 90% of total yield was obtained in 42 days after flowering.

  • PDF

Finite-Horizon Online Transmission Scheduling on an Energy Harvesting Communication Link with a Discrete Set of Rates

  • Bacinoglu, Baran Tan;Uysal-Biyikoglu, Elif
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.293-300
    • /
    • 2014
  • As energy harvesting communication systems emerge, there is a need for transmission schemes that dynamically adapt to the energy harvesting process. In this paper, after exhibiting a finite-horizon online throughput-maximizing scheduling problem formulation and the structure of its optimal solution within a dynamic programming formulation, a low complexity online scheduling policy is proposed. The policy exploits the existence of thresholds for choosing rate and power levels as a function of stored energy, harvest state and time until the end of the horizon. The policy, which is based on computing an expected threshold, performs close to optimal on a wide range of example energy harvest patterns. Moreover, it achieves higher throughput values for a given delay, than throughput-optimal online policies developed based on infinite-horizon formulations in recent literature. The solution is extended to include ergodic time-varying (fading) channels, and a corresponding low complexity policy is proposed and evaluated for this case as well.

The Studies on Harvesting Time of Stalk Cutting in Burley Tobacco (버어리종의 대말림 수확시기에 관한 연구)

  • Bae, Seong-Guk;Han, H.C.;Choo, H.G.
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.2
    • /
    • pp.144-150
    • /
    • 1992
  • This study was carried out to investigate the effect of yield and quality on the harvesting time and methods of stalk cutting in Burley Tobacco.3 harvesting methods and 4 harvesting times of stalk cutting were compared to priming. The yield and quality were high when cut the stalk after second priming in stalk curing. It was also desirable that cut the stalk after second priming in stalk curing. It was also desirable that cut the stalk on 30 days after topping for standard fertilization(N-P2O5-K2O= 17.5-17.5-35.0kg/10a) plot, and 30-35 days after topping for 30% increased fertilization.

  • PDF

A Preliminary Study on Piezo-aeroelastic Energy Harvesting Using a Nonlinear Trailing-Edge Flap

  • Bae, Jae-Sung;Inman, Daniel J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.407-417
    • /
    • 2015
  • Recently, piezo-aeroelastic energy harvesting has received greater attention. In the present study, a piezo-aeroelastic energy harvester using a nonlinear trailing-edge flap is proposed, and its nonlinear aeroelastic behaviors are investigated. The energy harvester is modeled using a piezo-aeroelastic model of a two-dimensional typical section airfoil with a trailing-edge flap (TEF). A piezo-aeroelastic analysis is carried out using RL and time-integration methods, and the results are verified with the experimental data. The linearizing method using a describing function is used for the frequency domain analysis of the nonlinear piezo-aeroelastic system. From the linear and nonlinear piezo-aeroelastic analysis, the limit cycle oscillation (LCO) characteristics of the proposed energy harvester with the nonlinear TEF are investigated in both the frequency and time domains. Finally, the authors discuss the air speed range for effective piezo-aeroelastic energy harvesting.