• Title/Summary/Keyword: Harsh environments

Search Result 228, Processing Time 0.026 seconds

Prediction Model of Chloride Penetration in Concrete Bridge Deck Considering Environmental Effects (대기 환경조건을 고려한 콘크리트 교량 바닥판의 염소이온 침투 예측 모델)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • Recently, the deterioration of reinforced concrete structures, primarily due to corrosion of steel reinforcement, has become a major concern. Chloride-induced deterioration is the most important deterioration phenomenon in reinforced concrete structures in harsh environments. For the realistic prediction of chloride penetration into concrete, a mathematical model was developed in which the effects of diffusion, chloride binding and convection due to water movement can be taken into account. The aim of this research was to reach a better understanding on the physical mechanisms underlying the deterioration process of reinforced concrete associated with chloride-induced corrosion and to propose a reliable method for estimating these effects. Chloride concentrations coming from de-icing salts are significantly influenced by the exposure conditions such as salt usage, ambient temperature and repeated wet-dry cycles.

Robust Discrete-Time Observer Design (강인한 이산관측기 설계)

  • 허건수;김상진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.134-140
    • /
    • 1998
  • The authors have shown that the performance of discrete-time observer-based monitoring systems can be represented by the performance index k$_2$(P) (condition number of the eigensystem P of the observer matrix in terms of L$_2$ norm). The observers with the minimized performance index can be defined as robust observers in the sense that the observer performance can be guaranteed in harsh environments. In this paper, based on the performance index, a design methodology for the robust discrete-time observer is developed. Similar to the continuous-time case, the methodology determines the structure and eigenvalues of the observer matrix simultaneously. A complete design procedure is given for single-output case and is illustrated with a spindle-driver example. The simulation results demonstrate the improved performance compared with a traditional pole-placement observer technique.

  • PDF

Bringing 3D ICs to Aerospace: Needs for Design Tools and Methodologies

  • Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Three-dimensional integrated circuits (3D ICs), starting with memory cubes, have entered the mainstream recently. The benefits many predicted in the past are indeed delivered, including higher memory bandwidth, smaller form factor, and lower energy. However, 3D ICs have yet to find their deployment in aerospace applications. In this paper we first present key design tools and methodologies for high performance, low power, and reliable 3D ICs that mainly target terrestrial applications. Next, we discuss research needs to extend their capabilities to ensure reliable operations under the harsh space environments. We first present a design methodology that performs fine-grained partitioning of functional modules in 3D ICs for power reduction. Next, we discuss our multi-physics reliability analysis tool that identifies thermal and mechanical reliability trouble spots in the given 3D IC layouts. Our tools will help aerospace electronics designers to improve the reliability of these 3D IC components while not degrading their energy benefits.

A Study on Direct Bonding of 3C-SiC Wafers Using PECVD Oxide (CVD 절연막을 이용한 3C-SiC기판의 직접접합에 관한 연구)

  • 정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.164-167
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS applications because of its application possibility in harsh environments. This paper presents on pre-bonding according to HF pre-treatment conditions in SiC wafer direct bonding using PECVD oxide. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The 3C-SiC epitaxial films grown on Si(100) were characterized by AFM and XPS, respectively. The bonding strength was evaluated by tensile strength method. Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 5.3 kgf/$\textrm{cm}^2$∼Max : 15.5 kgf/$\textrm{cm}^2$).

  • PDF

Probabilistic time-dependent sensitivity analysis of HPC bridge deck exposed to chlorides

  • Ghosh, Pratanu;Konecny, Petr;Lehner, Petr;Tikalsky, Paul J.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.305-313
    • /
    • 2017
  • A robust finite element based reinforced concrete bridge deck corrosion initiation model is applied for time-dependent probabilistic sensitivity analysis. The model is focused on uncertainties in the governing parameters that include variation of high performance concrete (HPC) diffusion coefficients, concrete cover depth, surface chloride concentration, holidays in reinforcements, coatings and critical chloride threshold level in several steel reinforcements. The corrosion initiation risk is expressed in the form of probability over intended life span of the bridge deck. Conducted study shows the time-dependent sensitivity analysis to evaluate the significance of governing parameters on chloride ingress rate, various steel reinforcement protection and the corrosion initiation likelihood. Results from this probabilistic analysis provide better insight into the effect of input parameters variation on the estimate of the corrosion initiation risk for the design of concrete structures in harsh chloride environments.

METALLIC INTERFACES IN HARSH CHEMO-MECHANICAL ENVIRONMENTS

  • Yildiz, Bilge;Nikiforova, Anna;Yip, Sidney
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.21-38
    • /
    • 2009
  • The use of multi scale modeling concepts and simulation techniques to study the destabilization of an ultrathin layer of oxide interface between a metal substrate and the surrounding environment is considered. Of particular interest are chemo-mechanical behavior of this interface in the context of a molecular-level description of stress corrosion cracking. Motivated by our previous molecular dynamics simulations of unit processes in materials strength and toughness, we examine the challenges of dealing with chemical reactivity on an equal footing with mechanical deformation, (a) understanding electron transfer processes using first-principles methods, (b) modeling cation transport and associated charged defect migration kinetics, and (c) simulation of pit nucleation and intergranular deformation to initiate the breakdown of the oxide interlayer. These problems illustrate a level of multi-scale complexity that would be practically impossible to attack by other means; they also point to a perspective framework that could guide future research in the broad computational science community.

Mechanical Properties and Morphology of the Recycled Thermoplastic Elastomer Molding (재생 엘라스토머 수지의 기계적 물성과 모폴로지)

  • No, B.S.;Lee, G.H.;Jeong, Y.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.31-35
    • /
    • 2007
  • Automotive weather strip should have good weather ability, sealability, durability, etc. to perform its duty as body sealing for vehicles under different harsh environments. Due to its comprehensive properties, thermoplastic vulcanizate(TPV) is widely employed in weather strip as alternative for ethylene propylene diene rubber(EPDM). In this study, the influences of the recycled TPV on the tensile strength and hardness were investigated. As results of the injection molding experiment, the recycled TPV's tensile strength and hardness were higher than the virgin TPV and recycled TPV's extension was improve. The morphology showed that recycled TPV's rubber particles became smaller than virgin TPV's rubber particles.

Precopulatory Mate Guarding, Mating System and Pairing Parental Care in Hyale rubra (Peracarida; Amphipoda; Gammaridae)

  • Kim, Sung-Han
    • Journal of Ecology and Environment
    • /
    • v.31 no.1
    • /
    • pp.17-21
    • /
    • 2008
  • Mating behaviour of the gammarid amphipod, Hyale rubra, was observed. H. rubra displayed precopulatory mate guarding: males clasped females with their gnathopods during copulation, forming a pair. Males also participated in embryo care during the incubation period. The population was small, and the sex ratio was almost equal. Energy allocation for mating effort and parental effort in the two sexes appear to be almost equal. The mating system was sequentially polygamous (or promiscuous) and there was conspicuous sexual dimorphism in the size of the gnathopod, which was used for mate guarding. However, there appears to be relatively weak sexual competition for mating opportunities despite conspicuous sexual dimorphism. H. rubra did not display territorial competition or external fertilization. Nevertheless, the male provided paternal care. Since H. rubra inhabit tide pools and live on algae, the polygamous mating system of the species can be explained by the polygyny threshold model. The evolution of mate guarding and parental care may have been favored by the species' low population density and harsh environments, an interpretation consistent with the optimality model.

A Study on the Electric Performance of NGK Porcelain Insulators for long period use in 154kV Transmission Line (외산 154kV NGK 노후애자의 전기적 성능 평가)

  • Choi, In-Hyuk;Park, Hyun-Min;Won, Gyeong-Bae;Kang, Dong-Hoon;Shin, Koo-Yong;Kim, Young-Hong;Kim, Min-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.426-428
    • /
    • 2015
  • The NGK suspension insulators are subjected in harsh environments in service above 40 years long time. The long term reliability of the insulators is required for both mechanical and electrical performances. This study describes some electrical performances according to KEPCO-standard. There was fail in electrical and mechanical performance test such as galvanizing, low-frequence wet flashover voltage, puncture and combine mechanical & electrical strength test. The NGK suspension insulators of 1968 were shown lower electrical and mechanical performance than those of 1979.

  • PDF

Proteomic analysis of heat-stable proteins in Escherichia coli

  • Kwon, Soon-Bok;Jung, Yun-A;Lim, Dong-Bin
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.108-111
    • /
    • 2008
  • Some proteins of E. coli are stable at temperatures significantly higher than $49^{\circ}C$, the maximum temperature at which the organism can grow. The heat stability of such proteins would be a property which is inherent to their structures, or it might be acquired by evolution for their specialized functions. In this study, we describe the identification of 17 heat-stable proteins from E. coli. Approximately one-third of these proteins were recognized as having functions in the protection of other proteins against denaturation. These included chaperonin (GroEL and GroES), molecular chaperones (DnaK and FkpA) and peptidyl prolyl isomerases (trigger factor and FkpA). Another common feature was that five of these proteins (GroEL, GroES, Ahpc, RibH and ferritin) have been shown to form a macromolecular structure. These results indicated that the heat stability of certain proteins may have evolved for their specialized functions, allowing them to cope with harsh environments, including high temperatures.