• Title/Summary/Keyword: Harris Detector

Search Result 32, Processing Time 0.02 seconds

Automated Generation of Corner Detectors Using Genetic Programming (Genetic Programming을 이용한 코너 검출자의 자동생성)

  • Kim, Young-Kyun;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.580-585
    • /
    • 2009
  • This paper introduces GP(Genetic Programming) based corner detectors for an image processing. Various empirical algorithms have been studied to improve computational speed and accuracy including typical approaches, such as Harris and SUSAN. The these techniques are highly efficient, because properties of corner points are inspected and reflected into the algorithms. However these approaches are limited in discovering an innovative algorithm. In this study, we try to discover a more efficient technique by creating corner detector automatically using evolution of GP. The proposed method is compared to the existing corner detectors for test images.

Shape Recognition of 3-D Protein Molecules Using Feature and Pocket Points (포켓과 특징 점을 이용한 3차원 단백질 분자 형상인식)

  • Lee, Hang-Chan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • Protein molecules are combined with another ones which have similar shapes at pocket positions. The pocket positions can be good references to describe the shapes of protein molecules. Harris corner detector is commonly used to detect feature points of 2 or 3D objects. Feature points can be found on the pocket areas and the points which have high derivatives. Generally speaking, the densities of feature points are relatively high at pocket areas because the shapes of pockets are concave. The pocket areas can be decided by the subdivision of voxel cubes which include feature points. The Euclidean distances between feature points and the central coordinate of the decided pocket area are calculated and sorted. The graph of sorted distances describes the shape of a protein molecule and the distribution of feature points. Therefore, it can be used to classify protein molecules by their shapes. Even though the shapes of protein molecules have been distorted with noises, they can be recognized with the accuracy more than 95 %. The accurate shape recognition provides the information to predict the binding properties of protein molecules.

Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function (평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적)

  • Kim, Ki-Sang;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.

Feature Extraction Techniques from Micro Drill Bits Images (마이크로 드릴 비트 영상에서의 특징 추출 기법)

  • Oh, Se-Jun;Kim, Nak-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.919-920
    • /
    • 2008
  • In this paper, we present early processing techniques for visual inspection of metallic parts. Since metallic surfaces give rise to specular reflections, it is difficult to extract object boundaries using elementary segmentation techniques such as edge detection or binary thresholding. In this paper, we present two techniques for finding object boundaries on micro bit images. First, we explain a technique for detecting blade boundaries using a directional correlation mask. Second, a line and angle extraction technique based on Harris corner detector and Hough transform is described. These techniques have been effective for detecting blade boundaries, and a number of experimental results are presented using real images.

  • PDF

Scale and Rotation Robust Genetic Programming-Based Corner Detectors (크기와 회전변화에 강인한 Genetic Programming 기반 코너 검출자)

  • Seo, Ki-Sung;Kim, Young-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.339-345
    • /
    • 2010
  • This paper introduces GP(Genetic Programming) based robust corner detectors for scaled and rotated images. Various empirical algorithms have been studied to improve computational speed and accuracy including approaches, such as the Harris and SUSAN, FAST corner detectors. These techniques are highly efficient for well-defined corners, but are limited to corner-like edges which are often generated in rotated images. It is very difficult to detect correctly edges which have characteristics similar to corners. In this paper, we have focused the above challenging problem and proposed Genetic Programming-based automated generation of corner detectors which is robust to scaled and rotated images. The proposed method is compared to the existing corner detectors on test images and shows superior results.

Vision-based AGV Parking System (비젼 기반의 무인이송차량 정차 시스템)

  • Park, Young-Su;Park, Jee-Hoon;Lee, Je-Won;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • This paper proposes an efficient method to locate the automated guided vehicle (AGV) into a specific parking position using artificial visual landmark and vision-based algorithm. The landmark has comer features and a HSI color arrangement for robustness against illuminant variation. The landmark is attached to left of a parking spot under a crane. For parking, an AGV detects the landmark with CCD camera fixed to the AGV using Harris comer detector and matching descriptors of the comer features. After detecting the landmark, the AGV tracks the landmark using pyramidal Lucas-Kanade feature tracker and a refinement process. Then, the AGV decreases its speed and aligns its longitudinal position with the center of the landmark. The experiments showed the AGV parked accurately at the parking spot with small standard deviation of error under bright illumination and dark illumination.

Vision based place recognition using Bayesian inference with feedback of image retrieval

  • Yi, Hu;Lee, Chang-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.19-22
    • /
    • 2006
  • In this paper we present a vision based place recognition method which uses Bayesian method with feed back of image retrieval. Both Bayesian method and image retrieval method are based on interest features that are invariant to many image transformations. The interest features are detected using Harris-Laplacian detector and then descriptors are generated from the image patches centered at the features' position in the same manner of SIFT. The Bayesian method contains two stages: learning and recognition. The image retrieval result is fed back to the Bayesian recognition to achieve robust and confidence. The experimental results show the effectiveness of our method.

  • PDF

Improved image alignment algorithm based on projective invariant for aerial video stabilization

  • Yi, Meng;Guo, Bao-Long;Yan, Chun-Man
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3177-3195
    • /
    • 2014
  • In many moving object detection problems of an aerial video, accurate and robust stabilization is of critical importance. In this paper, a novel accurate image alignment algorithm for aerial electronic image stabilization (EIS) is described. The feature points are first selected using optimal derivative filters based Harris detector, which can improve differentiation accuracy and obtain the precise coordinates of feature points. Then we choose the Delaunay Triangulation edges to find the matching pairs between feature points in overlapping images. The most "useful" matching points that belong to the background are used to find the global transformation parameters using the projective invariant. Finally, intentional motion of the camera is accumulated for correction by Sage-Husa adaptive filtering. Experiment results illustrate that the proposed algorithm is applied to the aerial captured video sequences with various dynamic scenes for performance demonstrations.

Panoramic Image Composition Algorithm through Scaling and Rotation Invariant Features (크기 및 회전 불변 특징점을 이용한 파노라마 영상 합성 알고리즘)

  • Kwon, Ki-Won;Lee, Hae-Yeoun;Oh, Duk-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.333-344
    • /
    • 2010
  • This paper addresses the way to compose paronamic images from images taken the same objects. With the spread of digital camera, the panoramic image has been studied to generate with its interest. In this paper, we propose a panoramic image generation method using scaling and rotation invariant features. First, feature points are extracted from input images and matched with a RANSAC algorithm. Then, after the perspective model is estimated, the input image is registered with this model. Since the SURF feature extraction algorithm is adapted, the proposed method is robust against geometric distortions such as scaling and rotation. Also, the improvement of computational cost is achieved. In the experiment, the SURF feature in the proposed method is compared with features from Harris corner detector or the SIFT algorithm. The proposed method is tested by generating panoramic images using $640{\times}480$ images. Results show that it takes 0.4 second in average for computation and is more efficient than other schemes.

Overlay Text Graphic Region Extraction for Video Quality Enhancement Application (비디오 품질 향상 응용을 위한 오버레이 텍스트 그래픽 영역 검출)

  • Lee, Sanghee;Park, Hansung;Ahn, Jungil;On, Youngsang;Jo, Kanghyun
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.559-571
    • /
    • 2013
  • This paper has presented a few problems when the 2D video superimposed the overlay text was converted to the 3D stereoscopic video. To resolve the problems, it proposes the scenario which the original video is divided into two parts, one is the video only with overlay text graphic region and the other is the video with holes, and then processed respectively. And this paper focuses on research only to detect and extract the overlay text graphic region, which is a first step among the processes in the proposed scenario. To decide whether the overlay text is included or not within a frame, it is used the corner density map based on the Harris corner detector. Following that, the overlay text region is extracted using the hybrid method of color and motion information of the overlay text region. The experiment shows the results of the overlay text region detection and extraction process in a few genre video sequence.