• 제목/요약/키워드: Harr 분류기

검색결과 4건 처리시간 0.018초

스마트 폰에서 취득한 얼굴영상에서 아이라인 검출에 관한 연구 (A Study on the Eye-line Detection from Facial Image taken by Smart Phone)

  • 구하성;송호근
    • 한국정보통신학회논문지
    • /
    • 제15권10호
    • /
    • pp.2231-2238
    • /
    • 2011
  • 본 논문에서는 얼굴영상에서 눈과 아이라인을 추출하는 방법을 제안한다. 기존의 논문은 눈동자의 위치를 추출하는 것이 대부분이나, 본 논문에서는 눈의 위치뿐만 아니라 아이라인까지 추출함으로써 얼굴 응용분야에 다양하게 적용될 수 있다. 입력영상은 스마트폰 카메라로 정면을 찍은 얼굴 사진을 실험 자료로 하였으며, 기본적으로 영상은 1명의 얼굴로 제한하며, 배경은 어느 곳에서나 찍을 수 있고, 조명의 상태는 일정하지 않으며, 인종에 관한 제약은 없다. 제안하는 방법은 입력영상에서 Harr 분류기를 이용하여 얼굴후보영역 추출하고 얼굴 후보영역에서 눈의 위치 후보영역을 설정하였다. 눈의 후보영역에서 팽창연산을 이용하여 값이 큰 부분을 추출하고, 이 영상을 지역적인 이진화를 하여 눈과 눈썹을 분리하는 방법을 제안하였다. 그 후 Hsu가 제안한 EyemapC를 이용한 영상을 이진화하여 눈이 있는 부분과 눈이 없는 부분을 분리한 후, 그 눈의 윤곽선을 추출하고 최적타원 추정을 이용하여 아이라인을 검출하였다.

눈깜박임과 심박수를 이용한 졸음 경고 시스템 (Drowsiness warning system using eye-blink and heart rate)

  • 이종엽;정재훈;김대영;권지혜;윤태진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.519-520
    • /
    • 2021
  • 본 논문에서는 딥러닝 기반의 얼굴인식과 Harr Cascade 분류기를 이용한 눈인식, 스마트워치를 매개로 한 심박수 측정을 활용하여 운전자 졸음운전 경고 시스템을 제안하였다. 제안하는 시스템은 PERCLOS 방법을 적용하여 운전자의 눈 감은 시간을 누적시켜 졸음 상태 유무를 판단하고, 스마트워치의 HR센서를 활용한 운전자의 심박수 값 모니터링을 진행하여 졸음 발생 시 경고음을 발생시켜 졸음운전으로 인한 교통사고를 예방할 수 있다.

  • PDF

플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템 구현 (Implementation of User Gesture Recognition System for manipulating a Floating Hologram Character)

  • 장명수;이우범
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.143-149
    • /
    • 2019
  • 플로팅 홀로그램은 광고나 콘서트와 같이 넓은 공간에서 현장감과 실존감이 뛰어난 3D 입체영상을 제공하면서, 3D 안경의 불편함, 시각적 피로, 공간 왜곡 현상 발생을 감소할 수 있는 기술이다. 따라서 본 논문은 좁은 공간에서도 사용가능한 플로팅 홀로그램 환경에서 캐릭터 조작을 위한 사용자 제스처 인식 시스템을 구현한다. 제안된 방법은 하르 특징기반의 캐시케이드((Harr feature-based cascade classifier) 분류기를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역을 기준으로 실시간으로 체스쳐 차영상으로부터 사용자 제스쳐의 발생 위치 정보를 이용하여 사용자 제스쳐를 인식한다. 그리고 각각 인식된 제스쳐 정보는 플로팅 홀로그램 환경에서 생성된 캐릭터 움직임을 조작하기 위하여 상응하는 행위에 맵핑된다. 제안된 플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템의 성능평가를 위해서는 플로팅 홀로그램 디스플레이 장치를 제작하고, 몸 흔들기, 걷기, 손 흔들기, 점프 등의 각 제스처에 따른 인식률을 반복 측정한 결과 평균 88%의 인식률을 보였다.

서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹 (Real-Time Head Tracking using Adaptive Boosting in Surveillance)

  • 강성관;이정현
    • 디지털융복합연구
    • /
    • 제11권2호
    • /
    • pp.243-248
    • /
    • 2013
  • 본 논문에서는 복잡한 배경에서의 사람의 머리 추적에 있어서 효과적인 Adaptive Boosting에 의한 방법을 제안한다. 하나의 특징 추출 방법은 사람의 머리를 모델링하기에는 부족하다. 따라서 본 연구에서는 여러 가지 특징 추출 방법을 병행하여 정확한 머리 검출을 시도하였다. 머리 영상의 특징 추출은 sub-region과 Haar 웨이블릿 변환(Haar wavelet transform)을 이용하였다. Sub-region은 머리의 지역적인 특징을 나타내고, Haar 웨이블릿 변환은 얼굴의 주파수 특성을 나타내기 때문에 이들을 이용하여 특징을 추출하면 효과적인 모델링이 가능해 진다. 실시간으로 입력되는 영상에서 사람의 머리를 추적하기 위하여 제안하는 방법에서는 3가지 형태의 Harr-wavelet 특징을 AdaBoosting 알고리즘으로 학습한 후 결과를 이용하였다. 원래 AdaBoosting 알고리즘은 학습시간이 매우 길며 학습데이터가 변하면 다시 학습을 수행해야 하는 단점이 존재한다. 이 단점을 극복하기 위하여 제안하는 방법에서는 캐스케이드를 이용한 AdaBoosting의 효율적인 학습방법을 제안한다. 이 방법은 머리 영상에 대한 학습시간은 감소시키며, 학습데이터의 변화에도 효율적으로 대처할 수 있다. 이 방법은 학습과정을 레벨별로 분리한 후 중요도가 높은 학습데이터를 다음 단계에 반복적으로 적용시킨다. 제안하는 방법이 적은 학습 시간과 학습 데이터를 사용해서 우수한 성능을 가지는 분류기를 생성하였다. 또한, 이 방법은 다양한 머리데이터를 가진 실시간 영상데이터에 적용한 결과 다양한 머리를 정확하게 검출 및 추적하였다.