• Title/Summary/Keyword: Harnack-type inequalities

Search Result 2, Processing Time 0.015 seconds

GRADIENT ESTIMATES AND HARNACK INEQUALITES OF NONLINEAR HEAT EQUATIONS FOR THE V -LAPLACIAN

  • Dung, Ha Tuan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1285-1303
    • /
    • 2018
  • This note is motivated by gradient estimates of Li-Yau, Hamilton, and Souplet-Zhang for heat equations. In this paper, our aim is to investigate Yamabe equations and a non linear heat equation arising from gradient Ricci soliton. We will apply Bochner technique and maximal principle to derive gradient estimates of the general non-linear heat equation on Riemannian manifolds. As their consequence, we give several applications to study heat equation and Yamabe equation such as Harnack type inequalities, gradient estimates, Liouville type results.

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.