• 제목/요약/키워드: Harmony Search (HS)

검색결과 64건 처리시간 0.022초

Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames

  • Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.323-347
    • /
    • 2014
  • This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-column connections based on the HS-PSO algorithm. The developed code selects suitable sections for beams and columns, from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-${\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark design examples with several types of connections are presented and the results are compared with those of standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods.

메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 성능 개량을 위한 데이터 전처리의 적용 (Application of data preprocessing to improve the performance of the metaheuristic optimization algorithm-deep learning combination model)

  • 류용민;이의훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.114-114
    • /
    • 2022
  • 딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.

  • PDF

Scaled and unscaled ground motion sets for uni-directional and bi-directional dynamic analysis

  • Kayhan, Ali Haydar
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.563-588
    • /
    • 2016
  • In this study, solution models are proposed to obtain code-compatible ground motion record sets which can be used for both uni-directional and bi-directional dynamic analyses. Besides scaled, unscaled ground motion record sets are obtained to show the utility and efficiency of the solution models. For scaled ground motion sets the proposed model is based on hybrid HS-Solver which integrates heuristic harmony search (HS) algorithm with the spreadsheet Solver add-in. For unscaled ground motion sets HS based solution model is proposed. Design spectra defined in Eurocode-8 for different soil types are selected as target spectra. The European Strong Motion Database is used to get ground motion record sets. Also, a sensitivity analysis is conducted to evaluate the effect of different HS solution parameters on the solution accuracy. Results show that the proposed solution models can be regarded as efficient ways to develop scaled and unscaled ground motion sets compatible with code-based design spectra.

음계를 기반으로 한 HS 구현 (HS Implementation Based on Music Scale)

  • 이태봉
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.299-307
    • /
    • 2022
  • Harmony Search(HS)는 비교적 최근에 개발된 메타 휴리스틱 최적화 알고리즘으로 최근 이에 관한 연구가 다양하게 진행되고 있다. HS는 음악인의 즉홍 연주를 기반으로 하고 있으며 목적변수는 악기의 역할을 한다. 그러나 각 악기는 음대역만 주어질 뿐 음악의 기본이라 할 수 있는 음계의 개념이 없다. 본 연구에서는 기존 HS에 음계를 도입하고 대역폭을 양자화하여 알고리즘의 성능을 향상시키고자 한다. 도입한 음계는 음대역 범위에서 무작위로 초기화되던 기존 방식을 대신하여 HM 초기화에 적용하였다. 양자화 단계는 임의로 정할 수 있도록 하였으며 이를 통해 알고리즘 초반에는 상대적으로 큰 대역폭을 사용하여 알고리즘의 탐색성을 향상시키고 후반에는 작은 대역폭을 통해 탐지성을 향상시키고자 하였다. 음계 도입과 대역폭 양자화를 통하여 기존 HS보다 초기값에 따른 알고리즘 성능 편차를 줄이고 알고리즘 수렴속도 및 성공률을 향상시킬 수 있었다. 본 연구의 성과는 여러 함수에 대한 최적화 수치 예를 종래의 방식과 비교하여 확인하였다. 구체적인 비교 수치는 모의실험에 서술하였다.

Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.109-114
    • /
    • 2012
  • In this paper, we utilize training strategy of hidden Markov model (HMM) to use in versatile issues such as classification of time-series sequential data such as electric transient disturbance problem in power system. For this, an automatic means of optimizing HMMs would be highly desirable, but it raises important issues: model interpretation and complexity control. With this in mind, we explore the possibility of using genetic algorithm (GA) and harmony search (HS) algorithm for optimizing the HMM. GA is flexible to allow incorporating other methods, such as Baum-Welch, within their cycle. Furthermore, operators that alter the structure of HMMs can be designed to simple structures. HS algorithm with parameter-setting free technique is proper for optimizing the parameters of HMM. HS algorithm is flexible so as to allow the elimination of requiring tedious parameter assigning efforts. In this paper, a sequential data analysis simulation is illustrated, and the optimized-HMMs are evaluated. The optimized HMM was capable of classifying a sequential data set for testing compared with the normal HMM.

HS 알고리즘을 이용한 CNN의 Hyperparameter 결정 기법 (Method that determining the Hyperparameter of CNN using HS algorithm)

  • 이우영;고광은;김종우;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제27권1호
    • /
    • pp.22-28
    • /
    • 2017
  • Convolutional Neural Network(CNN)는 특징 추출과 분류의 두 단계로 나눌 수 있다. 그 중 특징 추출 단계의 커널의 크기, 채널의 수, stride 등의 hyperparameter는 CNN의 구조를 결정할 뿐만 아니라 특징을 추출하는 데에도 영향을 주기 때문에 CNN의 전체적인 성능에도 영향을 준다. 본 논문에서는 Parameter-Setting-Free Harmony Search(PSF-HS) 알고리즘을 이용하여 CNN의 특징 추출 단계에서의 hyperparameter를 최적화 하는 방법을 제안하였다. CNN의 전체 구조를 설정한 뒤 hyperparameter를 변수로 설정하였고 PSF-HS 알고리즘을 적용하여 hyperparameter를 최적화 하였다. 시뮬레이션은 MATLAB을 이용하여 진행하였고 CNN은 mnist 데이터를 이용하여 학습과 테스트를 했다. 총 500번 동안 변수를 업데이트했고 제안하는 방법을 이용하여 구한 CNN 구조 중 가장 높은 정확도를 가지는 구조는 99.28%의 정확도로 mnist 데이터를 분류하는 것을 확인할 수 있었다.

K-means 군집화 및 Harmony Search 알고리즘을 이용한 분산 SDN의 부하 분산 기법 (A Load Balancing Scheme for Distributed SDN Based on Harmony Search with K-means Clustering)

  • 김세준;유승언;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.29-30
    • /
    • 2019
  • 본 논문에서는 다중 컨트롤러가 존재하는 분산 SDN 환경에서 과도한 제어 메시지로 인한 과부하된 컨트롤러의 부하를 줄이기 위하여 이주할 스위치를 K-means 군집화와 Harmony Search(HS)를 기반으로 선정 하는 기법을 제안하였다. 기존에 HS를 이용하여 이주할 스위치를 선택하는 기법이 제시되었으나, 시간 소모에 비하여 정확도가 부족한 단점이 있다. 또한 Harmony Memory(HM) 구축을 위해 메모리 소모 또한 크다. 이를 해결하기 위하여 본 논문에서는 유클리드 거리를 기반으로 하는 K-means 군집화를 이용하여 이주할 스위치를 골라내어 HM의 크기를 줄이고 이주 효율을 향상 시킨다.

  • PDF

터널 굴착면 전방의 이상지반 예측을 위한 전기비저항 기반 하모니서치 (HS) 역해석 알고리즘 (Harmony search algorithm to predict anomalous zone ahead of tunnel face utilizing electrical resistivity survey)

  • 박진호;이강현;신상훈;이성원;이인모
    • 한국터널지하공간학회 논문집
    • /
    • 제16권2호
    • /
    • pp.149-160
    • /
    • 2014
  • 본 연구의 목적은 전기비저항을 사용한 터널 굴착면 전방의 이상지반 탐사 시 이상지반의 위치와 두께 및 전기적 특성을 예측하기 위한 하모니서치(Harmony Search, HS) 알고리즘의 적용과 역해석 정확성의 검증이다. 가우스법칙(Gauss' laws)과 옴의 법칙(Ohm's laws)으로부터 이상지반 존재 시 암반의 전기저항과 이상지반 특성 변수를 연관 짓는 관계식을 유도하고, 전기저항을 사용하여 이상지반 특성 변수를 예측하도록 HS 알고리즘 기반의 역해석 프로그램을 개발하였다. 지반의 전기비저항을 측정하기 위한 저항 측정 시스템을 제작하였으며, 제안된 HS 알고리즘을 검증하기 위해 실내실험으로 모사한 이상지반의 전기저항을 측정하여 역해석을 수행하였다. 그 결과, 이상지반의 위치와 두께에 대한 예측은 5% 이하의 낮은 오차율을 나타내어 이상지반의 특성을 높은 정확도로 예측함을 보였다.

자가적응 화음탐색 알고리즘을 이용한 복합형 최적 구조제어 시스템 설계 (Optimal Design of a Hybrid Structural Control System using a Self-Adaptive Harmony Search Algorithm)

  • 박원석
    • 한국전산구조공학회논문집
    • /
    • 제31권6호
    • /
    • pp.301-308
    • /
    • 2018
  • 이 논문에서는 다중 재난을 고려한 복합 구조제어 시스템의 최적 설계방법을 제시한다. 한 가지 유형의 위험에 대해 하나의 시스템이 설계되는 전형적인 구조제어 시스템과는 달리, 구조물의 지진 및 바람에 의한 진동응답을 저감하기 위해 능동 및 수동제어 시스템에 대한 동시 최적 설계방법을 제안하였다. 수치 예로서, 30층 빌딩 구조물에 설치된 30개의 점성 댐퍼와 복합형 질량 감쇠기에 대한 최적 설계문제를 보였다. 최적화 문제를 풀기 위해 자체적응 화음탐색(harmony search, HS)알고리즘을 채택하였다. 화음탐색 알고리즘은 사람이 연주하는 악기의 튜닝 과정을 모방한 전역 최적화를 위한 메타 휴리스틱 진화 연산방법의 하나이다. 또한 전역 탐색 및 빠른 수렴을 위해 자가적응적이고 동적인 매개변수 조정 알고리즘을 도입하였다. 최적화 설계 결과, 능동 및 수동 시스템이 독립적으로 최적화된 표준적인 복합제어 시스템에 비해 제안한 동시 최적제어 시스템의 성능과 효율성이 우수함을 보였다.

A comparative study on optimum design of multi-element truss structures

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.521-535
    • /
    • 2016
  • A Harmony Search (HS) and Genetic Algorithms (GA), two powerful metaheuristic search techniques, are used for minimum weight designs of different truss structures by selecting suitable profile sections from a specified list taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB interacting with SAP2000-OAPI to obtain solution of design problems. The stress constraints according to AISC-ASD (Allowable Stress Design) and displacement constraints are considered for optimum designs. Three different truss structures such as bridge, dome and tower structures taken from literature are designed and the results are compared with the ones available in literature. The results obtained from the solutions for truss structures show that optimum designs by these techniques are very similar to the literature results and HS method usually provides more economical solutions in multi-element truss problems.