• Title/Summary/Keyword: Harmonic vibration

Search Result 625, Processing Time 0.028 seconds

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.

Stability behavior of the transmission line system under incremental dynamic wind load

  • Sarmasti, Hadi;Abedi, Karim;Chenaghlou, Mohammad Reza
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.509-522
    • /
    • 2020
  • Wind load is the principal cause for a large number of the collapse of transmission lines around the world. The transmission line is traditionally designed for wind load according to a linear equivalent method, in which dynamic effects of wind are not appropriately included. Therefore, in the present study, incremental dynamic analysis is utilized to investigate the stability behavior of a 400 kV transmission line under wind load. In that case, the effects of vibration of cables and aerodynamic damping of cables were considered on the stability behavior of the transmission line. Superposition of the harmonic waves method was used to calculate the wind load. The corresponding wind speed to the beginning of the transmission line collapse was determined by incremental dynamic analysis. Also, the effect of the yawed wind was studied to determine the critical attack angle by the incremental dynamic method. The results show the collapse mechanisms of the transmission line and the maximum supportable wind speed, which is predicted 6m/s less than the design wind speed of the studied transmission line. Based on the numerical modeling results, a retrofitting method has been proposed to prevent failure of the tower members under design wind speed.

On the wave propagations of football game ball after contacting with the player foot

  • Lei Sun;Cancan Wei;Fei Liu;Lijun Wang;Bo Ren
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.529-542
    • /
    • 2023
  • Wave propagation with high transverse deflection could affect the stability of the ball in its trajectory. For low stiffness balls similar to soccer and volleyball balls, the waves are more noticeable in comparison to other balls like ping-pong ball. On the other hand, the soccer balls are under heavy impact loads from shoots and contacting different objects in the field. The maximum recorded speed of a soccer ball after kicking is the 211 km/hr and the average maximum speed is around 112 km/hr. Therefore, in such speeds the aerodynamic forces become important which are directly related to geometrical shape of the ball. In this regard, the wave propagation in soccer ball is examined in the current study using large deformation shear deformable formulations. Classical relations of stress-strain components are taken into consideration along with minimum total energy principle. The final derived relations were solved by using harmonic differential quadrature method. The results are generally presented ion term of phase velocity as function of different influencing parameters of the materials, geometry and mass of the ball.

A study on wafer processing using backgrinding system

  • Seung-Yub Baek
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • Recently, there has been extensive research conducted on the miniaturization of semiconductors and the improvement of their integration to achieve high-quality and high-performance electronic devices. To integrate and miniaturize multiple semiconductors, thin and precise wafers are essential. The backgrinding process, which involves high-precision processing, is necessary to achieve this. The backgrinding system is used to grind and polish the back side of the wafer to reduce its thickness to ㎛ units. This enables the high integration and miniaturization of semiconductors and a flattening process to allow for detailed circuit design, ultimately leading to the production of IC chips. As the backgrinding system performs precision processing at the ㎛ unit, it is crucial to determine the stability of the equipment's rigidity. Additionally, the flatness and surface roughness of the processed wafer must be checked to confirm the processability of the backgrinding system. IIn this paper, the goal is to verify the processability of the back grinding system by analyzing the natural frequency and resonance frequency of the equipment through computer simulation and measuring and analyzing the flatness and surface roughness of wafers processed with backgrinding system. It was confirmed whether processing damage occurred due to vibration during the backgrinding process.

Active Control of Harmonic Signal Based on On-line Fundamental Frequency Tracking Method (실시간 기본주파수 추종방법에 근간한 조화 신호의 능동제어)

  • 김선민;박영진
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1059-1066
    • /
    • 2000
  • In this paper. a new indirect feedback active noise control (ANC) scheme barred on the fundamental frequency estimation is proposed for systems with a harmonic noise. When reference signals necessary for feedforward ANC configuration are difficult to obtain, the conventional ANC algorithms for multi-tonal noise do not measure the reference signals but generate them with the estimated frequencies.$^{(4)}$ However, the beating phenomena, in which certain frequency components of the noise vanish intermittently, may make the adaptive frequency estimation difficult. The confusion in the estimated frequencies due to the beating phenomena makes the generated reference signals worthless. The proposed algorithm consists of two parts. The first part is a reference generator using the fundamental frequency estimation and the second one is the conventional feedforward control. We propose the fundamental frequency estimation algorithm using decision rules. which is insensitive to the beating phenomena. In addition, the proposed fundamental frequency estimation algorithm has good tracking capability and lower variance of frequency estimation error than that of the conventional cascade ANF method.$^{(4)}$ We are also able to control all interested modes of the noise, even which cannot be estimated by the conventional frequency estimation method because of the poor S/N ratio. We verify the performance of the proposed ANC method through simulations for the measured cabin noise of a passenger ship and the measured time-varying engine booming noise of a passenger vehicle.

  • PDF

A Study on the Structural Integrity of Transportable Heavy-duty Tracking-mount (이동형 대하중 추적 마운트의 구조 건전성에 대한 연구)

  • Kim, Byung In;Son, Young Soo;Park, Cheol Hoon;Lee, Sung Hwi;Ham, Sang Yong;Jo, Sang Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-885
    • /
    • 2013
  • Satellites provide a lot of information and essay roles in the areas of defense and space observations. The precise distances to the satellites are measured by emitting and retro-reflecting a laser. For such surveys, satellite laser ranging (SLR) systems have been developed in different forms and for different areas. The structural integrity of the tracking mount is essential for it to be able to track a high-speed satellite precisely, overcoming the various external and internal disturbances and operating conditions. In this study, the analysis of a tracking mount was performed for weight, wind loads, and inertia loads in order to verify its soundness. The results of the comparison between aluminum and steel were analyzed in order to select the optimal material for the fork and main housing part. In addition, the natural frequency and mode shape were predicted. Optimal material selection and structural integrity will also be verified using static analysis.

Response Reduction of a SDOF Structure based on Friction Force Ratio of MR Controller (MR제어기의 마찰력비에 따른 단자유도 구조물의 응답감소)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.435-443
    • /
    • 2010
  • This study presents key parameters for the structure installed with MR controller in reducing its responses. MR controller is regarded as Bingham model of which control forces are frictional and viscous ones. The parameters are identified as friction force ratios, $R_f$ and $R_h$ which are, respectively, ratio of MR controller friction force to static restoring force for free vibration and ratio of the friction force to amplitude of harmonic force. Structure-MR controller system shows nonlinear response behavior due to friction force. Energy balance strategy is adopted to transform the behavior to linear one with equivalent damping ratio. Finally, proposed equivalent linear process is compared to the nonlinear one, which turns out to give acceptably good results.

An Analysis on Vibratory Loads Reduction using Individual Blade Control in Active Helicopter Rotors (지능형 헬리콥터 로터의 개별 블레이드 제어에 의한 진동하중 감소 해석)

  • Kim, Sung-Kyun;Shin, Sang-Joon;Kim, Tae-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.496-502
    • /
    • 2007
  • In the present paper, a new version of DYMORE, which is an analysis to solve a nonlinear multi-body dynamics problem, is used to simulate an Individual Blade Control (IBC) algorithm in order to reduce vibration in helicopter rotors. The Active Twist Rotor (ATR), in which Active Fiber Composites (AFC) are embedded, is utilized for IBC. The main purpose of the present investigation is to compare the analytical results with experiments and previous version of DYMORE. The experiments are performed at NASA Langley Transonic Dynamics Tunnel. According to the present result, it is observed that the correlation regarding the vibratory loads is improved.

Characteristics comparison between air-cored and iron-cored 100 kW HTS field winding synchronous motors

  • Yoon, Jonghoon;Bong, Uijong;An, Soobin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.38-43
    • /
    • 2020
  • This paper presents comparative research on characteristics of air-cored and iron-cored high-temperature superconductor (HTS) field winding synchronous motors. The 100 kW air-cored model is designed analytically by Spatial Harmonic Method, and based on this model, the iron-cored model having the same output power is designed for comparison. Due to the substantial difference of permeability property between air and iron-core, there is a difference of magnetic field magnitude and angle with respect to the HTS tape c-axis, resulting in a different critical current of the field winding considering the anisotropic property of HTS tape. For a detailed comparison between two models, the following key motor characteristics are calculated through the Finite Element Method (FEM) simulation: 1) critical current; 2) HTS wire length; and 3) torque characteristics. From the simulation results, it can be confirmed that the critical current value of the iron-cored model increases by 33 %. Also, in the case of the superconducting wire consumption, those of the iron-cored and air-cored models are 95.3 m and 815.6 m, respectively. So the wire usage can be reduced to about 88 % by using iron core. However, in terms of torque characteristics, the torque ripple of the iron-cored model is about twice as large as that of the air-cored model, which may be a disadvantage on vibration and acoustic noise.

Seismic Response Control of Arch Structures using Semi-active TMD (준능동 TMD를 이용한 아치구조물의 지진응답제어)

  • Kang, Joo-Won;Kim, Gee-Cheol;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, the possibility of seismic response control of semi-active tuned mass damper (TMD) for spatial structures has been investigated. To this end, an arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. A TMD and semi-active TMD were applied to the example arch structure and the seismic control performance of them were evaluated based on the numerical simulation. In order to regulate the damping force of the semi-active TMD, groundhook control algorithm, which is widely used for semi-active control, was used. El Centro (1940) and Northridge (1994) earthquakes and harmonic ground motion were used for performance evaluation of passive TMD and semi-active TMD. Based on the analytical results, the passive TMD could effectively reduce the seismic responses of the arch structure and it has been shown that the semi-active TMD more effectively decreased the dynamic responses of the arch structure compared to the passive TMD with respect to all the excitations used in this study.

  • PDF