• Title/Summary/Keyword: Harmonic series

Search Result 352, Processing Time 0.02 seconds

A RECURSION FOR ALTERNATING HARMONIC SERIES

  • BENYI ARPAD
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.377-381
    • /
    • 2005
  • We present a convenient recursive formula for the sums of alternating harmonic series of odd order. The recursion is obtained by expanding in Fourier series certain elementary functions.

SOME INCLUSION RELATIONS OF CERTAIN SUBCLASSES OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH GENERALIZED DISTRIBUTION SERIES

  • Magesh, Nanjundan;Porwal, Saurabh;Themangani, Rajavadivelu
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.843-854
    • /
    • 2020
  • The purpose of this present paper is to obtain inclusion relations between various subclasses of harmonic univalent functions by using the convolution operator associated with generalized distribution series. To be more precise, we obtain such inclusions with harmonic starlike and harmonic convex mappings in the plane.

Even Harmonic Analysis of Series Arc-fault Current Using BPF of GIC Application in Computer (GIC 적용 대역통과필터를 이용한 컴퓨터 부하의 직렬 아크고장 전류 우수고조파 분석)

  • Ko, Won-Sik;Moon, Won-Sik;Bang, Sun-Bae;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1554-1560
    • /
    • 2012
  • In this paper, the even harmonic current(2nd, 4th, 6th, 8th) of the arc fault current and normal current were measured in computer load and analyzed. The BPF with GIC was developed to detection of harmonic, the exact center frequency and a high degree of sharpness could be easily obtained. The total even harmonic distortion due to series arc fault in computer load was 31.2%, this value was increased 3.9 times better than the total even harmonic distortion of normal current. The results of analysis of arc fault current RMS variation rate and Peak variation rate per half-cycle, The RMS average variation rate are as follows ; the 2nd harmonic was 0.24, the 4th harmonic was 0.15, the 6th harmonic was 0.19, the 8th harmonic was 0.25, respectively. The Peak average variation rate are as follows ; the 2nd harmonic was 0.19, the 4th harmonic was 0.12, the 6th harmonic was 0.13, the 8th harmonic was 0.15, respectively. The results of this analysis utilize data to detect of series arc fault on wiring of computer load.

A Study on the Series and Parallel Resonant Filters for Harmonic Currents Reduction of Nonlinear Loads (비선형부하의 고조파전류 저감을 위한 직렬 및 병렬 동조필터에 관한 연구)

  • 김경철;강윤모;백승현;김종욱
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.113-118
    • /
    • 2003
  • This paper characterizes typical nonlinear loads into two types of harmonic sources, i.e., harmonic voltage source and harmonic current source. A series resonant filter is very effective in harmonic reduction for harmonic voltage source type of nonlinear loads such as personal computer loads with smoothing dc capacitors. A parallel resonant filter is suited for current source type of nonlinear loads such as ac drives with smoothing dc reactors. General compensation characteristics and comparison of series and parallel resonant filters are given analytically and experimentally. Compliance with IEC Std 1000-3-2 has been evaluated for limiting harmonic distortion.

A Study on the series Active Power Filter for Harmonic Reduction of 3-Phase 3-Wire System (3상 3선식 시스템의 고조파 저감을 위한 직렬형 능동전력필터에 관한 연구)

  • 한윤석
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.735-738
    • /
    • 2000
  • In this paper we propose a series active power filter and a simple calculation method acquiring the reference voltage. A series active power filter is suitable to suppress harmonics produced by voltage type harmonic source such as a diode rectifier with filter capacitor on the DC side The proposed series active power filter system is applied to 3-phase 3-wire power system including the voltage type harmonic source. Experimental result obtained from a laboratory model are shown to verify the viability and effectiveness of the proposed system.

  • PDF

A New Control Algorithm of Series Active Power Filter for Harmonic Reduction in Power System (전력계통 시스템에서 고조파 저감을 위한 새로운 직렬형 능동전력필터의 제어법)

  • Lim, Seung-Won;Han, Yoon-Seok;Kim, Young-Seok;Won, Chung-Yuen;Choi, Se-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.5
    • /
    • pp.221-228
    • /
    • 2001
  • In this paper, a new control algorithm of series active power filter is proposed to reduce harmonic generated from nonlinear load in power system. In conventional control algorithm, harmonic current must be calculated firstly, and then compensation voltage was calculated by using the results but the proposed control algorithm can calculate compensation voltage directly. Compensating principle of proposed control algorithm is presented in detail. A combined system of series active filter and passive filter is composed in order to experiment. Experiment was carried out to verify proposed control algorithm of series active filter and experimental results are analyzed.

  • PDF

Harmonic Analysis of a Modular Multilevel Converter Using Double Fourier Series

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Ahn, Jin Hong;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.298-306
    • /
    • 2018
  • This paper presents a harmonic analysis of the modular multilevel converter (MMC) using a double Fourier series (DFS) algorithm. First, the application of DFS for harmonic calculation in the MMC is made by considering the effect of arm inductor. The analytical results are then confirmed by comparing with the simulation results of using the fast Fourier transform (FFT) algorithm. Finally, distribution of harmonics and total harmonic distortion (THD) in the MMC will be analyzed in three cases: harmonics versus number of levels of MMC, harmonics versus total switching frequency and harmonics versus modulation index. The simulation results are performed in the PSCAD/EMTDC simulation program in order to verify the analytical results obtained by Matlab programming.

A Series Active Power Filter For Harmonic Currents And Reactive Power Compensation (고조파 전류와 무효전력보상을 위한 직렬형 능동전력필터)

  • 김진선;고수현;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.221-229
    • /
    • 2003
  • This paper suggests a control algorithm of 3-phase 3-wire series active power filter. This suggested algorithm can compensate source harmonics and reactive power in 3-phase 3-wire power distribution systems. These harmonics are generated by nonlinear loads such as diode rectifiers and thyristor converters. This control algorithm extracts a compensation voltage reference from performance function without phase transformation. Therefore, this control algorithm is simpler than any other conventional control algorithms. 3-phase 3-wire series active power filters which have a harmonic voltage source and a harmonic current source are manufactured and experiments are carried out to verify the effectiveness of suggested control algorithm.

Grid-friendly Control Strategy with Dual Primary-Side Series-Connected Winding Transformers

  • Shang, Jing;Nian, Xiaohong;Chen, Tao;Ma, Zhenyu
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.960-969
    • /
    • 2016
  • High-power three-level voltage-source converters are widely utilized in high-performance AC drive systems. In several ultra-power instances, the harmonics on the grid side should be reduced through multiple rectifications. A combined harmonic elimination method that includes a dual primary-side series-connected winding transformer and selective harmonic elimination pulse-width modulation is proposed to eliminate low-order current harmonics on the primary and secondary sides of transformers. Through an analysis of the harmonic influence caused by dead time and DC magnetic bias, a synthetic compensation control strategy is presented to minimize the grid-side harmonics in the dual primary side series-connected winding transformer application. Both simulation and experimental results demonstrate that the proposed control strategy can significantly reduce the converter input current harmonics and eliminates the DC magnetic bias in the transformer.