• Title/Summary/Keyword: Harmonic loading

Search Result 94, Processing Time 0.023 seconds

Pressure loading, end- shortening and through- thickness shearing effects on geometrically nonlinear response of composite laminated plates using higher order finite strip method

  • Sherafat, Mohammad H.;Ghannadpour, Seyyed Amir M.;Ovesy, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.677-691
    • /
    • 2013
  • A semi-analytical finite strip method is developed for analyzing the post-buckling behavior of rectangular composite laminated plates of arbitrary lay-up subjected to progressive end-shortening in their plane and to normal pressure loading. In this method, all the displacements are postulated by the appropriate harmonic shape functions in the longitudinal direction and polynomial interpolation functions in the transverse direction. Thin or thick plates are assumed and correspondingly the Classical Plate Theory (CPT) or Higher Order Plate Theory (HOPT) is applied. The in-plane transverse deflection is allowed at the loaded ends of the plate, whilst the same deflection at the unloaded edges is either allowed to occur or completely restrained. Geometric non-linearity is introduced in the strain-displacement equations in the manner of the von-Karman assumptions. The formulations of the finite strip methods are based on the concept of the principle of the minimum potential energy. The Newton-Raphson method is used to solve the non-linear equilibrium equations. A number of applications involving isotropic plates, symmetric and unsymmetric cross-ply laminates are described to investigate the through-thickness shearing effects as well as the effect of pressure loading, end-shortening and boundary conditions. The study of the results has revealed that the response of the composite laminated plates is particularly influenced by the application of the Higher Order Plate Theory (HOPT) and normal pressure loading. In the relatively thick plates, the HOPT results have more accuracy than CPT.

A Numerical Analysis on Acoustic Radiation Efficiency of One Side-Wetted Rectangular Mindlin Plate with Simply Supported Boundaries (Mindlin 판 이론을 적용한 단순지지 단면 접수평판의 음향방사효율 수치해석)

  • Lee, Jong-Ho;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.281-288
    • /
    • 2018
  • Acoustic radiation efficiency is a crucial factor to estimate Underwater Radiated Noise (URN) of ships accurately. This paper describes a numerical method to analyse acoustic radiation efficiency of one side-wetted rectangular Mindlin plate with simply supported boundaries excited by a harmonic point force. Transverse displacements of plate and acoustic radiation pressures are evaluated by the mode superposition method. The acoustic radiation efficiencies analyzed by both Mindlin and thin plate theories show little differences at monopole and corner modes of low frequency regions but relatively large differences at edge and critical modes of high frequency regions. Especially, the critical frequency with the highest acoustic radiation efficiency evaluated by the Mindlin plate theory is higher than that of thin plate theory. In addition, the acoustic loading effect of fluid also increases bending wave-number of plate and its critical frequency. Finally, the acoustic radiation characteristics of plates with different aspect ratios and thicknesses through numerical analyses are investigated and discussed.

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

Dynamic analysis of non-symmetric FG cylindrical shell under shock loading by using MLPG method

  • Ferezghi, Yaser Sadeghi;Sohrabi, Mohamad R.;MosaviNezhad, Seyed M.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.659-669
    • /
    • 2018
  • The Dynamic equations in the polar coordinates are drawn out using the MLPG method for the non-symmetric FG cylindrical shell. To simulate the mechanical properties of FGM, the nonlinear volume fractions for radial direction are used. The shape function applied in this paper is a form of the radial basis functions, by using this function all the requirements for an effective and suitable shape function are established. Hence in this study, the multiquadrics (MQ) radial basis functions are exploited as the shape function governing the problem. The MLPG method is combined with the the Newmark time approximation scheme to solve dynamic equations in the time domain. The obtained results by the MLPG method to be verified are compared with the analytical solution and the FEM. The obtained results through the MLPG method show a good agreement in comparison to other results and the MLPG method has high accuracy for dynamic analysis of the non-symmetric FG cylindrical shell. To demonstrate the capability of the present method to dynamic analysis of the non-symmetric FG cylindrical shell, it is analyzed dynamically with different volume fraction exponents under harmonic and rectangular shock loading. The present method shows high accuracy, efficiency and capability to dynamic analysis of the non-symmetric FG cylindrical shell with nonlinear grading patterns.

Static and dynamic analysis of cable-suspended concrete beams

  • Kumar, Pankaj;Ganguli, Abhijit;Benipal, Gurmail
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.611-620
    • /
    • 2017
  • A new theory of weightless sagging planer elasto-flexible cables under point loads is developed earlier by the authors and used for predicting the nonlinear dynamic response of cable-suspended linear elastic beams. However, this theory is not valid for nonlinear elastic cracked concrete beams possessing different positive and negative flexural rigidity. In the present paper, the flexural response of simply supported cracked concrete beams suspended from cables by two hangers is presented. Following a procedure established earlier, rate-type constitutive equations and third order nonlinear differential equations of motion for the structures undergoing small elastic displacements are derived. Upon general quasi-static loading, negative nodal forces, moments and support reactions may be introduced in the cable-suspended concrete beams and linear modal frequencies may abruptly change. Subharmonic resonances are predicted under harmonic loading. Uncoupling of the nodal response is proposed as a more general criterion of crossover phenomenon. Significance of the bilinearity ratio of the concrete beam and elasto-configurational displacements of the cable for the structural response is brought out. The relevance of the proposed theory for the analysis and the design of the cable-suspended bridges is critically evaluated.

Determination of the Degree of Nonlinearity in the Response of Offshore Structures Using Higher Order Transfer Functions (고차 전이함수를 이용한 해양구조물 거동의 비선형도 결정)

  • 백인열
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.116-125
    • /
    • 1995
  • Higher order nonlinear transfer functions are applied to model the nonlinear responses obtained Inn dynamic analysis of single degree of freedom systems (SDOF) subjected to wave and current loadings. The structural systems are subjected to single harmonic, two wave combination and irregular wave loading. Three different sources of nonlinearities are examined for each of the wave loading condition and it is shown that the nonlinear response appear at the resonance frequencies of the SDOF even when virtually no wave energy exists at those resonance frequencies. Higher order nonlinear transfer functions based on Volterra series representation are used to model the nonlinear responses mainly f3r the flexible systems and clearly shows the degrees of nonlinearity either as quadratic or cubic.

  • PDF

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.123-131
    • /
    • 2014
  • In this paper we have considered the vibration of parametrically excited oscillator with strong cubic positive nonlinearity of complex variable in nonlinear dynamic systems with forcing based on Mathieu-Duffing equation. A new analytical approach called homotopy perturbation has been utilized to obtain the analytical solution for the problem. Runge-Kutta's algorithm is also presented as our numerical solution. Some comparisons between the results obtained by the homotopy perturbation method and Runge-Kutta algorithm are shown to show the accuracy of the proposed method. In has been indicated that the homotopy perturbation shows an excellent approximations comparing the numerical one.

Parallel operation of rectifier with unit-power factor (단위역률 정류기의 병렬운전)

  • Lee, Seung-Heui;Kim, Tae-Won;Park, Jae-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1212-1213
    • /
    • 2011
  • PWM(pulse width modulation) rectifier has unit power factor and low harmonic distortion with high power conversion efficiency in entire loading range. These merits of PWM rectifier help the spread of DC distribution system. In addition, if multiple PWM rectifiers can be operated in parallel connection, maintenance process can be simple and reliability of power source can be advanced because of the hot swapping is available. The other way, the load unbalance among rectifiers can force a converter to stop by over current. The surge current by closed circuit composition between rectifiers can force switching devices damage. In this paper, some problems that can occur in case of parallel operation of PWM rectifiers and problem eliminating methods are considered.

  • PDF