• Title/Summary/Keyword: Harmonic filters

Search Result 210, Processing Time 0.024 seconds

A Proposal of Compact Passive Harmonic Filter for ac Motor Drive (고성능 콤팩트형 AC모터드라이브 고조파 필터 제안)

  • Park, Byung-Ju;Yoon, Dong-Chul;Oh, Jeong-Cheol;Bae, Byung-Yeol;Hwang, An-Il;Yoo, Hang-Kyu;Choi, Seok-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.191-199
    • /
    • 2018
  • The harmonic reduction method of ac motor drive, ACL and DCL were commonly used, but the current distortion ratio was only 35%, thus the several different types of filters as BBHF(broad band harmonic filter), HHF(hybrid harmonic filter), NHHF(new hybrid harmonic filter) have been developed to satisfy the IEEE Std. 519 harmonic limitation. However, these filters had been limited marketability due to cost and size problems. This study suggests the methods to reduce cost and size of the harmonic filter including topologies, besides we discussed simulation results of the power system with regard to the implementation and performance of the filters.

The Method for Harmonics Elimination of a Single Phase Current by the Analog Relay Control Circuit and Passive Filters (릴레이 구동회로 및 수동필터를 이용한 단상 전원의 부하 적응형 고조파 전류 제거 기법)

  • Park, Jong-Yeon;Lee, Hu-Chan;Lee, Bong-Jin;Choi, Won-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.292-298
    • /
    • 2006
  • Because of the high cost for the active power filter, passive filters have been widly used to eliminate harmonic currents of nonlinear load and can also improve the power factor. They are not often optimal filters because the passive filters are designed under the fixed load conditions. In this paper we proposed the method which only the necessary harmonic filters are operated by detecting the various harmonic current components. We presents the new control method of passive filter selection type with the relay control circuit which is consist of analog GIC, comparater, flip-flop and etc. By the experimental results using the proposed system for the rectifier load, we concluded that the researched method is cost effective and the performance is better than the passive filter.

Compensation of Source Voltage Unbalance and Current Harmonics in Series Active and Shunt Passive Power Filters

  • Lee G-Myoung;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.586-590
    • /
    • 2001
  • In this paper, a novel control scheme compensating source voltage unbalance and harmonic currents for hybrid active power filters is proposed, where no low/high-pass filters are used in compensation voltage composition. The phase angle and compensation voltages for source harmonic current and unbalanced voltage components are derived from the positive sequence component of the unbalanced voltage set, which is simply obtained by using digital all-pass filters. Since a balanced set of the source voltage obtained by scaling the positive sequence components is used as reference values for source current and load voltage, it is possible to eliminate the necessity of low/high-pass filters in the reference generation. Therefore the control algorithm is much simpler and gives more stable performance than the conventional method. In addition, the source harmonic current is eliminated by compensating for the harmonic voltage of the load side added to feedback control of the fundamental component.

  • PDF

Harmonic Current Reference Generation of Single-Phase Active Filter for the Converter-Fed Locomotives (고속전철용 단상능동필터의 기준고조파전류 발생 방법)

  • Sung, Gi-Seok;Song, Joong-Ho;Choi, Ik;Choi, Ju-Yeop;Kim, Gwang-Bae;Kim, Kwon-Ho;Lim, Myo-Taek
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.338-341
    • /
    • 1999
  • PWM controlled line-side converters of modern ac traction locomotives inject harmonic currents into the feeding overhead line. This causes problem of electromagnetic interference. Passive and Active filters are usually provided for a reduction of the line harmonics. Active filters are more reasonable than passive filters in terms of weight and space of the filters. Successful control of active filters requires an accurate harmonic current reference. A technique to generate the harmonic current reference is proposed in this paper. The analysis is performed in frequency domain and its effectiveness is verified by simulation.

  • PDF

A Proposal of New Hybrid Passive Harmonic Filter for AC Motor Drive Line Filter Size Reduction (AC모터드라이브 라인필터의 축소화를 위한 신형 하이브리드고조파필터 제안)

  • Park, Byung-Ju;Yoon, Dong-Chul;Oh, Jeong-Cheol;Bae, Byung-Yeol;Hwang, An-il;Yoo, Hang-Kyu;Choi, Seok-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • ACL and DCL are have been conventionally used for reducing harmonic current on the input side of an ACMD. The current distortion ratio ITHD using ACL and DCL is only 35% to 85%, therefore to satisfy the IEEE Std. 519 requirements, the line filters has been focused as an alternative means. Those are installed between the AC power supply and the input of the ACMD, and must meet the IEEE Std. 519, be economical and be compact. To contribute to the widespread of using these line filters, we discussed concerning its topologies, simulation results, prototype test results as well as the cost evaluations. It included not only the proposed (NHHF) new hybrid harmonic filters which have both merits of simplicity and economic but also the past (BBHF) broadband harmonic filters and (HHF) hybrid harmonic filters.

Development of the RTDS Training Course for Control of Harmonic Currents using Passive Filters (수동필터를 이용한 RTDS 고조파 제거 모의 훈련 코스 개발)

  • Lee, N.H.;Cho, Y.S.;Lee, C.K.;Lee, W.H.;Shin, J.H.;Kim, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.304-306
    • /
    • 2005
  • This paper presents the RTDS training course on using passive filters for control of harmonic currents. The course can show harmonic currents in porer system, which is occurred by function generators, with Fourier analysis function of RTDS and the effect of passive filters implemented in RTDS to eliminate harmonics. In addition to, With Jeju-Haenam HVDC system, we have simulated the effect of passive filters on harmonic currents occurred by massive power conversion system of HVDC.

  • PDF

500VA Hybrid filter development for harmonic elimination of a single phase power (단상 전원의 고조파 제거용 500VA급 Hybrid 필터 개발)

  • Park, Jong-Yeon;Lee, Hu-Chan;Lee, Bong-Jin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.249-253
    • /
    • 2006
  • Because of the high cost for the active power filter, passive filters have been widly used to absorb harmonic currents of nonlinear loads and can also improve the power factor. They are not often optimal filters because the passive filters are designed with the fixed load conditions. In this paper we proposed the method which only the necessary harmonic filters are operated by detecting the various harmonic current components. By the experimental results using the proposed system for the 500VA rectifier load, we concluded that the researched hybrid filter is cost effective and the performance is better than the passive filter.

  • PDF

A Study on Tuning Factor(δ) and Quality Factor(Q) Values in Design of Single-Tuned Passive Harmonic Filters (단일동조 수동고조파필터 설계시의 동조계수(δ) 및 양호도(Q)값 연구)

  • Cho, Young-Sik;Cha, Han-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • This paper presents how to decide on tuning factor(${\delta}$) and quality factor(Q) values in design of single-tuned passive harmonic filters. Tuning factor(${\delta}$) and quality factor(Q) values have to consider before decision on circuit parameters of passive filters. A Study on these two value has not been scarcely performed and only experienced values has been used in passive harmonic filter design by far. As a experienced value, in cases of 5th and 7th filter, tuning factor(${\delta}$) is about 0.94 and 0.96 respectively and quality factor(Q) is, in all cases of, 50. If Single-tuned passive harmonic filter will be off-tuned, performance of filter will be decreased steeply and occur to parallel resonance between system reactance and filter capacitance. Therefore During the operation, In order not to off-tuning, Filter must be tuned at former order than actual tuning order. This is the same that total impedance of filter must have a reactive impedance. In this paper, Tuning factor(${\delta}$) is decided via example of real system and using the bode-plot and then performance of filters confirmed by filter current absorbtion rate. And Quality factor(Q) decided using the bode plot in example system and then performance of filters confirmed by filter current absorbtion rate also, which makes a calculated filter parameters to satisfy IEEE-519 distortion limits. Finally, Performance of the designed passive harmonic filter using the tuning factor(${\delta}$) and quality factor(Q) values, decided in this paper is verified by experiment and shows that 5th, 7th, 9th, 11th and 13th current harmonic distortions are decreased within IEEE-519 distortion limits, respectively.

Hybrid-Type Active Power Filters for Compensating Harmonic Current and Unbalanced Source Voltages (고조파 전류와 불평형 전원전압 보상을 위한 복합형 능동전력 필터)

  • Lee, Ji-Myeong;Lee, Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.249-257
    • /
    • 2002
  • In this paper, a novel control scheme compensating source voltage unbalance and harmonic currents for the combined system of series active and shunt passive power filter is proposed, where no low/high-pass filters are used in deriving the reference voltage for compensation. The phase angle and the reference voltages compensating for harmonic current and unbalanced voltage are derived from the positive sequence component of the unbalanced voltage set, which is simply obtained by using digital all-pass filters. In order to remove the phase delay in generating the reference voltage for compensation, the reference of 5th and 7th harmonic components is predicted one-sampling ahead. The validity of the proposed scheme has been verified for 3[kVA] proto-type active power filter system.

A Study on the Series and Parallel Resonant Filters for Harmonic Currents Reduction of Nonlinear Loads (비선형부하의 고조파전류 저감을 위한 직렬 및 병렬 동조필터에 관한 연구)

  • 김경철;강윤모;백승현;김종욱
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.113-118
    • /
    • 2003
  • This paper characterizes typical nonlinear loads into two types of harmonic sources, i.e., harmonic voltage source and harmonic current source. A series resonant filter is very effective in harmonic reduction for harmonic voltage source type of nonlinear loads such as personal computer loads with smoothing dc capacitors. A parallel resonant filter is suited for current source type of nonlinear loads such as ac drives with smoothing dc reactors. General compensation characteristics and comparison of series and parallel resonant filters are given analytically and experimentally. Compliance with IEC Std 1000-3-2 has been evaluated for limiting harmonic distortion.