• Title/Summary/Keyword: Harmonic current injection

Search Result 57, Processing Time 0.025 seconds

Three-Phase Current-Fed Active Power Filter Operating Characteristics by Optimized Injection Method (최적주입방식에 의한 3상 전류형 능동필터의 운전특성)

  • Park, Su-Young;Kim, Ho-Jin;Lee, Jung-Min;Hwang, Jung-Ho;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.451-455
    • /
    • 1991
  • The PWM control technique is proposed which can eliminate the harmonic components of the nonsinusoidal ac line current such as the current of 6-phase rectifier by injecting PWM current. TSC(Time-Sharing Control) is adopted to avoid the unbalance between three PWM injection currents at the three-phase system. Also a new power circuit for three-phase filter is suggested for realizing the proposed PWM control technique. The operation characteristics are investigated theoretically and experimentally to show the feasibility of the optimized injection method.

  • PDF

Torque Density Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications

  • Zhao, Pinzhi;Yang, Guijie
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.401-407
    • /
    • 2011
  • In order to enhance torque density of five-phase permanent magnetic synchronous motor with third harmonic injection for electric vehicles (EVs) applications, optimum seeking method for injection ratio of third harmonic was proposed adopting theoretical derivation and finite element analysis method, under the constraint of same amplitude for current and air-gap flux. By five-dimension space vector decomposition, the mathematic model in two orthogonal space plane, $d_1-q_1$ and $d_3-q_3$, was deduced. And the corresponding dual-plane vector control method was accomplished to independently control fundamental and third harmonic currents in each vector plane. A five-phase PMSM prototype with quasi-trapezoidal flux pattern and its fivephase voltage source inverter were designed. Also, the dual-plane vector control was digitized in a single XC3S1200E FPGA. Simulation and experimental results prove that using the proposed optimum seeking method, the torque density of five-phase PMSM is enhanced by 20%, without any increase of power converter capacity, machine size and iron core saturation.

Harmonic Winding Factors and MMF Analysis for Five-phase Fractional-slot Concentrated Winding PMSM

  • Kang, Huilin;Zhou, Libing;Wang, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • To enhance torque density by harmonic current injection, optimal slot/pole combinations for five-phase permanent magnet synchronous motors (PMSM) with fractional-slot concentrated windings (FSCW) are chosen. The synchronous and the third harmonic winding factors are calculated for a series of slot/pole combinations. Two five-phase PMSM, with general FSCW (GFSCW) and modular stator FSCW (MFSCW), are analyzed and compared in detail, including the stator structures, star of slots diagrams, and MMF harmonic analysis based on the winding function theory. The analytical results are verified by finite element method, the torque characteristics and phase back-EMF are also taken into considerations. Results show that the MFSCW PMSM can produce higher average torque, while characterized by more MMF harmonic contents and larger ripple torque.

Sensorless Operation of Low-cost Inverters through Square-wave High Frequency Voltage Injection (사각 고주파 주입을 통한 저가형 인버터의 센서리스 운전)

  • Hwang, Sang-Jin;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.95-103
    • /
    • 2022
  • In this paper, the efficiency of a sensorless method with square-wave injection for a low-cost inverter, so called B4 inverter is presented. This inverter comprises only 4 switches to reduce system cost. It is distinguished from the conventional B6 inverter that has 6 of switching elements. The B4 inverter, injected a 1 kHz of harmonic wave, has been modelled using the functions and library in Matlab/Simulink. This paper described each component of sensorless algorithm. Among them, the Notch Filter is used to extract the harmonic component of the phase current and a second-order low-pass filter was used to reduce the ripple of the estimated speed. It is shown through simulation that the rotor angle of a permanent magnet synchronous motor is detected by multiplying the current waveform extracted using the notch filter by the harmonic voltage. The feasibility of the proposed method is shown through Simulink simulation.

A Speed Control Characteristics for Five-Phase Squirrel-Cage Induction Motor Injecting 3rd Current Harmonics Component (제3 고조파 전류성분 주입에 의한 5상 농형 유도전동기의 속도제어 특성)

  • Kim, Min-Huei;Kim, Nam-Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • This paper proposes a improved speed control system for five-phase squirrel-cage induction motor(IM) injecting 3rd. current harmonic components with field oriented control (FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current in order to high response characteristics. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[kW] induction motor.

A Program for Calculation of Harmonic Distribution in Distribution Systems (배전계통의 고조파 분포 계산 프로그램)

  • Kim, Sung-Soo;Kang, Yong-Cheol;Nam, Soon-Ryul;Park, Jong-Keun;Myoung, Sung-Ho;Kang, Young-Seok;Choi, Hyo-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.817-819
    • /
    • 1996
  • This paper presents an algorithm for calculation of harmonic distribution in distribution systems. In distribution systems, most state variables are not given explicitly. To calculate the harmonic distribution in distribution systems, state estimation is necessary. In this paper, power usage and harmonic current injection is estimated for each node from practically available data. The estimating procedure is illustrated by examples.

  • PDF

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin;Huang, Jin;Kang, Min;Li, Bingnan;Zhao, Lihang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.899-907
    • /
    • 2014
  • This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

A 360Hz DC Ripple-Voltage Suppression Scheme in Three-Phase Soft-Switched Buck Converter (360Hz DC 리플-전압 감소기법을 사용한 3-Phase Soft-Switched Buck Converter)

  • Choi, Ju-Yeop;Ko, Jong-Jin;Song, Joong-Ho;Choy, Ick;Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.813-820
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output in three phase buck diode converter is presented in this paper. The proposed pulse frequency modulation methods and duty ratio modulation methods are employed to regulate the output voltage of the buck diode converter and guarantee zero-current-switching(ZCS) of the switch over the wide load range. The proposed control methods used in this paper provide generally good performance such as low THD of the input line current and unity power factor. In addition, control methods can be effectively used to suppress the low frequency ripple voltage appeared in the dc output voltage. The harmonic injection technique illustrates its validity and effectiveness through the simulations and experiments.

  • PDF

Injection Molding for a Ultra Thin-Wall Part using Induction Heating (고주파 유도가열을 사용한 초박육 플라스틱 제품의 사출성형)

  • Park, Keun;Choi, Sun;Lee, Se-Jik;Kim, Young-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.481-487
    • /
    • 2008
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat material by means of an electric current that is caused to flow through the material or its container by electromagnetic induction. It has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation of induction heating in order to rapidly raise the mold temperature. It is observed that the mold surface temperature is raised up to $200^{\circ}C$ in 2 seconds. This induction heating is applied to injection molding of a flexspline for a plastic harmonic drive, which has difficulty in cavity filling because its minimum thickness is only 0.35 mm. The induction heating is then successfully implemented on this ultra-thin wall molding by raising the mold surface temperature around the glass-transition temperature of the molding material.

Employing Multi-Phase DG Sources as Active Power Filters, Using Fuzzy Logic Controller

  • Ghadimi, Ali Asghar;Ebadi, Mazdak
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1329-1337
    • /
    • 2015
  • By placing distributed generation power sources beside a big nonlinear load, these sources can be used as a power quality enhancer, while injecting some active power to the network. In this paper, a new scheme to use the distributed generation power source in both operation modes is presented. In this scheme, a fuzzy controller is added to adjust the optimal set point of inverter between compensating mode and maximum active power injection mode, which works based on the harmonic content of the nonlinear load. As the high order current harmonics can be easily rejected using passive filters, the DG is used to compensate the low order harmonics of the load current. Multilevel transformerless cascade inverters are preferred in such utilization, as they have more flexibility in current/voltage waveform. The proposed scheme is simulated in MATLAB/SIMULINK to evaluate the circuit performance. Then, a 1kw single phase prototype of the circuit is used for experimental evaluation of the paper. Both simulative and experimental results prove that such a circuit can inject a well-controlled current with desired harmonics and THD, while having a smaller switching frequency and better efficiency, related to previous 3-phase inverter schemes in the literature.