• Title/Summary/Keyword: Harmonic compensator

Search Result 99, Processing Time 0.02 seconds

Compensation of voltage drop and improvement of power quality at AC railroad system with single-phase distributed STATCOM (단상 배전 STATCOM을 이용한 전기철도시스템의 전압강하 및 전력품질 향상)

  • Kim, Jun-Sang;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.192-193
    • /
    • 2006
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion may also occur to AC electrical railroad system. These problems affect not only power system stability. but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, and then, it is analyzed voltage drop and power quality for AC electrical railroad system both with single-Phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

  • PDF

Investigation of Instability in Multiple Grid-Connected Inverters with LCL Output Filters

  • Asghari, Fariba;Safavizadeh, Arash;Karshenas, Hamid Reza
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.757-765
    • /
    • 2018
  • This paper deals with the instability and resonant phenomena in distribution systems with multiple grid-connected inverters with an LCL output filter. The penetration of roof-top and other types of small photovoltaic (PV) grid-connected systems is rapidly increasing in distribution grids due to the attractive incentives set forth by different governments. When the number of such grid-connected inverters increases, their interaction with the distribution grid may cause undesirable effects such as instability and resonance. In this paper, a grid system with several grid-connected inverters is studied. Since proportional-resonant (PR) controllers are becoming more popular, it is assumed that most inverters use this type of controller. An LCL filter is also considered at the inverters output to make the case as realistic as possible. A complete modeling of this system is presented. Consequently, it is shown that such a system is prone to instability due to the interactions of the inverter controllers. A modification of PR controllers is presented where the output capacitor is virtually decreased. As a result, the instability is avoided. Simulation results are presented and show a good agreement with the theoretical studies. Experimental results obtained on a laboratory setup show the validity of the analysis.

Performance Improvement of PMSM Current Control using Gain Attenuation and Phase Delay Compensated LPF (이득 감쇠 및 위상 지연 보상 LPF를 이용한 PMSM의 전류 제어 성능 개선)

  • Kim, Minju;Choi, Chinchul;Lee, Wootaik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • This paper applies a compensated low pass filter (LPF) to current measurements for permanent magnet synchronous motor (PMSM) drives. The noise limits the bandwidth of current controllers and has more adverse influences on control performances under the light load condition because of the low signal-to-noise ratio. In order to eliminate the noise sensitivity, this paper proposes a digital LPF with a compensator of gain attenuation and phase delay which are unacceptable in current information for PMSM drives. Characteristics of the proposed LPF are analyzed in comparison with the general LPFs. The compensated LPF is basically designed by the orthogonal property of the measured currents in the ${\alpha}{\beta}$ stationary reference frame. In addition, an implementation issue of the proposed method is discussed. Experimental results using the proposed method show improvements of the current control performance from two perspectives, rapid step responses and reductions of harmonic distortion.

A Study on the Practical Use of an Active Control System to Reduce Ship Superstructure Vibration (선박 상부구조 진동 저감을 위한 능동형 제어장치의 실용화 연구)

  • 조대승;최태묵;김진형;정성윤;백광렬;이수목;배종국;이장우
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.77-84
    • /
    • 2004
  • Active control is regarded as one of the most efficient and economic countermeasures to reduce excessive vibration of ship superstructure. However, it is difficult to find its practical application in real ships in spite that many studies on such systems have been done. In this study, for the practical use of an active control system to reduce ship superstructure vibration, we have developed an active vibration compensator consisting of a mechanical actuator having compact size and expected lifetime over 20 years, its control panel including exclusive signal processing and computing board, sensors to detect phase and vibration, and its operation software providing various user-interface functions. From the performance verification test of the system at a 5,500 TEU container carrier, we have confirmed the system could reduce ship superstructure vibration of a harmonic component of main engine rotating frequency up to 0.1 mm/s.

Online Dead Time Effect Compensation Algorithm of PWM Inverter for Motor Drive Using PR Controller

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1137-1145
    • /
    • 2017
  • This paper proposes the dead time effect compensation algorithm using proportional resonant controller in pulse width modulation inverter of motor drive. To avoid a short circuit in the dc link, the dead time of the switch device is surely required. However, the dead time effect causes the phase current distortions, torque pulsations, and degradations of control performance. To solve these problems, the output current including ripple components on the synchronous reference frame and stationary reference frame are analyzed in detail. As a results, the distorted synchronous d-and q-axis currents contain the 6th, 12th, and the higher harmonic components due to the influence of dead time effect. In this paper, a new dead time effect compensation algorithm using proportional resonant controller is also proposed to reduce the output current harmonics due to the dead time and nonlinear characteristics of the switching devices. The proposed compensation algorithm does not require any additional hardware and the offline experimental measurements. The experimental results are presented to demonstrate the effectiveness of the proposed dead time effect compensation algorithm.

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

A Study of Inter-harmonic Control for the KSTAR Power System (KSTAR 전력계통 안정화를 위한 비정수 고조파 보상에 관한 연구)

  • Oh, Jeong-Cheol;Shin, Tae-Sung;Park, Byung-Ju;Yoo, Hang-Kyu;Hwang, An-Il;Kong, Jong-dae;Hong, Seong-lok
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.467-468
    • /
    • 2015
  • 능동형필터는 주로 비선형 부하로 부터 발생되는 정수배의 고조파를 보상하는데 응용되어 왔다. 본 논문에서는 국가핵융합연구소(NFRI)의 KSTAR 주장치의 전원공급장치인 PF MPS가 가동되면서 특이한 저차수 대역의 비정수 고조파가 발생되는데 이는 MG(motor generator)와 RPC (Reactive Power Compensator)간의 병렬공진 확대현상으로 나타나 고조파 전류의 증가, 전압왜형 상승 등 안정적인 전력계통 운영에 영향을 주고 있다. 따라서 이의 원인이 되는 특이성의 비정수 고조파를 저감시키기 위한 제어 알고리즘 개발과 모의시험에 관한 연구내용을 다루고자한다. 지금까지 개발된 알고리즘은 주로 정수배 고조파만을 대상으로 한 FFT의 일괄보상, 혹은 개별차수 보상방식이었으나 여기서는 DQ 변환 알고리즘을 채용하여 정수배 고조파는 물론 0.5차 단위의 비정수 고조파까지 제어하는 기술을 다루었다.

  • PDF

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.

Compensation of Instantaneous Voltage Drop at AC Railroad System with Single-Phase Distributed STATCOM (전기철도 급전시스템의 순시전압강하 보상을 위한 단상 배전 STATCOM의 적용)

  • Kim, Jun-Sang;Lee, Seung-Hyuk;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hyun-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2007
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion my also occur to AC electrical railroad system. These problems affect not only power system stability, but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, andthen, it is analyzed voltage drop for AC electrical railroad system both with single-phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.