• 제목/요약/키워드: Harmonic balance

검색결과 107건 처리시간 0.021초

부분 내재적 조화 균형법을 이용한 주기적인 2차원 비정상 유동 해석 (2-D Periodic Unsteady Flow Analysis Using a Partially Implicit Harmonic Balance Method)

  • 임동균;박수형;권장혁
    • 한국항공우주학회지
    • /
    • 제38권12호
    • /
    • pp.1153-1161
    • /
    • 2010
  • 본 연구에서는 주기적 비정상 유동 해석을 위해 푸리에 변환을 이용하는 조화 균형법의 효율적인 해법을 제안한다. 내재적으로 유속항을 처리하고 외재적으로 조화 원천항을 처리하였다. 외재적 조화 균형법 보다 더 빠르게 수렴 시킬 수 있으며 내재적 조화 균형법을 적용할 때 추가되는 자코비안 행렬을 처리할 필요가 없다. 또한 완전 내재적 기법에 상응하는 수준의 수렴안정성을 확인할 수 있었다. 2차원 비정상 유동 문제로 피칭하는 NACA0012 익형에 적용하였으며 이중 시간 적분법 및 외재적 Runge-Kutta기법의 해와 매우 일치하는 결과를 얻었다.

다중격자 기법이 적용된 효율적인 조화 균형법 개발 (DEVELOPMENT OF EFFICIENT HARMONIC BALANCE METHOD WITH THE MULTIGRID METHOD)

  • 임동균;박수형;권장혁
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.76-84
    • /
    • 2010
  • In order to analyze the periodic unsteady flow problem efficiently the partially implicit harmonic balance (PIHB) method was developed. Contrary to the existing harmonic balance method, this method handles the harmonic source term explicitly and deals with flux terms implicitly. This method has a good convergence in comparison with the full explicit harmonic method and it is easy to apply this method because there is no need to calculate the complicated flux Jacobian term by comparing with the full implicit harmonic method. With the multigrid method about the each harmonic it turns out that this method has a good convergence regardless of the number of harmonics. The oscillating flows over NACA0012 airfoil is considered to verify this method then the result correponsed to both the result of dual time stepping and explicit Runge-Kutta method.

출력 소음을 고려한 직접방사형 라우드스피커의 비선형 매개변수 규명 (Identification of Nonlinear Parameters of Electrodynamic Direct-Radiator Loudspeaker with Output Noise)

  • 박석태;홍석윤
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.887-899
    • /
    • 1998
  • It has been resulted that Lagrange multiplier method with statistical approach was superior to traditional harmonic balance method in identifying the nonlinear loudspeaker parameters when output signals were contaminated with Gaussian random noise. We have known that the displacement-dependent characteristic values of nonlinear parameters identified by traditional harmonic balance method were estimated less than original values by the increase of output noise and the stiffness coefficients were very sensitive to output noise. Also, by the sensitivity analysis we have verified that the harmonic distortions in acoustic radiation was mainly due to nonlinearity of force factor caused by uneven magnetic fields and that reducing the nonlinearity of damping coefficients were very effective for improving second harmonic distrotion of acoustic radiation.

  • PDF

Dynamic Analysis of Harmonically Excited Non-Linear Structure System Using Harmonic Balance Method

  • 문병영;강범수;김병수
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1507-1516
    • /
    • 2001
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear structural systems. This method is based on the substructure synthesis formulation and a harmonic balance procedure, which is applied to the analysis of nonlinear responses. A complex nonlinear system is divided into substructures, of which equations are approximately transformed to modal coordinates including nonlinear term under the reasonable procedure. Then, the equations are synthesized into the overall system and the nonlinear solution for the system is obtained. Based on the harmonic balance method, the proposed procedure reduces the size of large degrees-of-freedom problem in the solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated using the study of the nonlinear rotating machine system as a large mechanical structure system. Results obtained are reported to be an efficient approach with respect to nonlinear response prediction when compared with other conventional methods.

  • PDF

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

하모닉 밸런스법을 이용한 비선형 진동절연 시스템의 근사적 응답 (Approximate Response of a Non-linear Vibration Isolation System Using the Harmonic Balance Method)

  • 이건명
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.124-129
    • /
    • 2018
  • A non-linear vibration isolation system which is composed of a non-linear spring and a linear damper was proposed in past research. When the support of the isolation system is excited harmonically, the response component of the isolation system mass at the excitation frequency has been calculated approximately using the harmonic balance method. The response was approximated by a single mode, and the result was compared with a numerical result which is assumed as an accurate one. Next, the response was approximated by two modes, and the result was compared with the former one.

State-Space Analysis on The Stability of Limit Cycle Predicted by Harmonic Balance

  • Lee, Byung-Jin;Yun, Suk-Chang;Kim, Chang-Joo;Park, Jung-Keun;Sung, Sang-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.697-705
    • /
    • 2011
  • In this paper, a closed-loop system constructed with a linear plant and nonlinearity in the feedback connection is considered to argue against its planar orbital stability. Through a state space approach, a main result that presents a sufficient stability criterion of the limit cycle predicted by solving the harmonic balance equation is given. Preliminarily, the harmonic balance of the nonlinear feedback loop is assumed to have a solution that determines the characteristics of the limit cycle. Using a state-space approach, the nonlinear loop equation is reformulated into a linear perturbed model through the introduction of a residual operator. By considering a series of transformations, such as a modified eigenstructure decomposition, periodic averaging, change of variables, and coordinate transformation, the stability of the limit cycle can be simply tested via a scalar function and matrix. Finally, the stability criterion is addressed by constructing a composite Lyapunov function of the transformed system.

대각 내재적 조화균형법을 이용한 헬리콥터 로터 블레이드의 비정상 공력 해석 (UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOR BLADES USING DIAGONAL IMPLICIT HARMONIC BALANCE METHOD)

  • 임동균;최성임;박수형;권장혁
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.21-27
    • /
    • 2011
  • In this paper, the diagonal implicit harmonic balance method is applied to analyze helicopter rotor blade flow. The periodic boundary condition for Fourier coefficients is also applied in hover and forward flight conditions. It is available enough to simulate the forward flight problem with only one rotor blade using the periodic boundary condition in the frequency domain. In order to demonstrate the present method, Caradonna & Tung's rotor blades were used and the results were compared to the time-accurate method and experimental data.

중첩 격자 기법이 적용된 대각 내재적 조화균형법을 이용한 헬리콥터 로터 블레이드의 비정상 공력 해석 (UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOR BLADES USING DIAGONAL IMPLICIT HARMONIC BALANCE METHOD)

  • 임동균;최성임;김유진;권장혁;박수형
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.70-77
    • /
    • 2012
  • In this paper, diagonal implicit harmonic balance method with overset grid technique is applied to analyze helicopter rotor blade flow in hover and forward flight condition. The chimera grid need interpolation time with sub-grid and background grid in moving problem such as forward flight on every time step. Present method is available enough to reduce the grid module interpolation time. In order to demonstrate present method, Caradonna & Tung's and AH-1G rotor blades are used and the results are compared to other researchers' result and experimental data.

대각 내재적 조화균형법을 이용한 헬리콥터 로터 블레이드의 비정상 공력 해석 (Unsteady Aerodynamic Analysis of Helicopter Rotor Blades Using Diagonal Implicit Harmonic Balance Method)

  • 임동균;최성임;박수형;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.543-549
    • /
    • 2011
  • In this paper, diagonal implicit harmonic balance method is applied to analyze helicopter rotor blade flow. Periodic boundary condition for Fourier coefficients is also applied in hover and forward flight condition. It is available enough to simulate the forward flight problem with only one rotor blade using the periodic boundary condition in frequency domain. In order to demonstrate present method Carodonna & Tung's rotor blades are used and the results are compared to time-accurate method and experimental data.

  • PDF