• Title/Summary/Keyword: Harmonic Rejection

Search Result 57, Processing Time 0.025 seconds

Design of a Novel low Pass Filler will Low Spurious Response for Satellite Transponder (위성중계기를 위한 낮은 불요 특성을 갖는 새로운 형태의 저역통과 필터 설계)

  • 이문규;류근관;염인복;이성팔
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.172-175
    • /
    • 2001
  • A novel microstrip type low-pass filter using thin or thick film resistors is proposed to efficiently eliminate harmonic spurious response in stop-band. The proposed low-pass filter shows the spurious suppression enhancement of 20 dB over a conventional one. The designed low-pass filter could be used as a harmonic rejection filter of a local oscillator for Ku-band satellite payload system.

  • PDF

A Comprehensive Harmonic Rejection for DFIG Feeding Non-Linear Loads in Stand-Alone Applications

  • Nguyen, Ngoc-Tung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.258-259
    • /
    • 2012
  • This paper proposes a new control strategy to eliminate the harmonic components of stator current for stand-alone DFIG system feeding non-linear loads. In this method, the LSC operates as an active filter which is controlled by employing a proportional-integral and a resonant controller. And also, the stator current is used as the feedback signal for the compensator instead of the load current, so that the additional current sensor at the load side can be removed. The experiment is verified to validate the effectiveness of the proposed compensating method.

  • PDF

A Technique for Reducing the Size of Microwave Amplifiers using Spiral-Shaped Defected Ground Structure (맴돌이형 결함접지구조를 이용한 마이크로파 증폭기의 소형화 방법)

  • Lim, Jong-Sik;Jeong, Yong-Chae;Ahn, Dal;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.904-911
    • /
    • 2003
  • A new method to reduce the size of microwave amplifiers spiral-shaped defected ground structure(Spiral-DGS) is proposed. A microstrip line having Spiral-DGS on the ground plane produces increased slow-wave factor and electrical length for the fixed physical length. In addition, it provides an excellent rejection characteristic for a finite frequency band like band rejection filters. The rejection band is used for rejecting harmonic components of amplifiers. The reduced microstrip line lengths in matching networks by Spiral-DGS are 39 % and 44 % of the original ones in input and output matching networks, respectively. It is shown that the measured S-parameters of the reduced amplifier agree well with those of the original amplifier. The measured second harmonic of the reduced amplifier is much less than that of the original amplifier by at least 10 dB. The same technique is applied to reject the third harmonic using the proper Spiral-DGS for the third harmonic frequency. The measured third harmonic is smaller than that of the original amplifier by 25 dB.

A UWB Antenna with the Adjustable Second Rejection Band Using a SIR (SIR을 이용한 제 2저지 대역 제어 가능 UWB 안테나)

  • Choi, Hyung-Seok;Choi, Kyung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1019-1024
    • /
    • 2012
  • In this paper, a UWB antenna using a SIR(Step Impedance Resonator) that eliminate signal interference at 5 GHz WLAN as the first rejection band and adjust the second rejection band is proposed. Unlike the unit impedance resonator, the second harmonic of SIR is decided according to step impedance. Therefore, To adjust the second rejection band, SIR is applied to UWB antenna. Also, the equivalent circuit of the antenna at first rejection band is presented and the equivalent modeling values of the SIR and the coupling value is obtained. The proposed antenna is satisfied to cover full UWB band with return losses less than -10 dB and has band rejection characteristic in 5 GHz WLAN band. The radiation patterns show +y directivity characteristics in H-plane and the group delay variations are within 1.0 ns.

Study on Millimeter Wave Power Amp Employing PBG (PBG를 이용한 밀리미터웨이브 대역 고출력 증폭기에 대한 연구)

  • 임석순;서철헌;김태원;박규호;송희석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • In this paper, We designed the millimeter wave power amplifier employing PBG. The amplifier has the bandwidth from 24.6 GHz to 24.75 GHz. For improvement of the Linearity and the PAE of the amplifier, PBG was designed to suppress the 2nd harmonic of the Amplifer. The Proposed PBG have smaller area and better rejection characteristic than conventional PBG structure. The fabricated PBG shows 35 dB or more of rejection characteristic at the 2nd harmonic band of the amplifier. The amplifier has balanced structure having lange coupler which means better input$.$output return loss and higher output power.

A Study on the Improvement of the Performance of Power Amplifiers by Deflected Ground Structure

  • Lim, Jong-Sik;Lee, Young-Taek;Han, Jae-Hee;Nam, Sang-wook;Park, Jun-Seok;Ahn, Dal;Kim, Byung-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.2
    • /
    • pp.146-155
    • /
    • 2001
  • This paper describes the improvement in performance of power amplifiers by Defected Ground Structure (DGS) for several operating classes. Due to its excellent capability of harmonic rejection, DGS plays a threat role in improving the main performance of power amplifiers such as output power, power added efficiency, harmonic rejection, and intermodulation distortion (IMD3). In order to verify the improvement in performance of power amplifiers by DGS, measured data for a 30 Watts power amplifier with and without DGS attached under several operating classes are illustrated and compared. The principle of the performance improvement is described with simple Volterra nonlinear transfer functions. Also, the measured performance far two cases, i.e. with and without DGS, and the quantities of improvement fur the various operating classes are compared and discussed.

  • PDF

Current Harmonics Rejection and Improvement of Inverter-Side Current Control for the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1672-1682
    • /
    • 2017
  • For grid-connected LCL-filtered inverters, the inverter-side current can be used as the control object with one current sensor for both LCL resonance damping and over-current protection, while the grid-voltage feedforward or harmonic resonant compensator is used for suppressing low-order grid current harmonics. However, it was found that the grid current harmonics were high and often beyond the standard limitations with this control. The limitations of the inverter-side current control in suppressing low-order grid current harmonics are analyzed through inverter output impedance modeling. No matter which compensator is used, the maximum magnitudes of the inverter output impedance at lower frequencies are closely related to the LCL parameters and are decreased by increasing the control delay. Then, to improve the grid current quality without complicating the control or design, this study proposes designing the filter capacitance considering the current harmonic constraint and using a PWM mode with a short control delay. Test results have confirmed the limitation and verified the performance of the improved approaches.

The Design of FET Frequency Tripler for K Band (K 밴드 FET 주파수 3체배기 설계)

  • Bae, Sung-Ho;Chun, Young-Hoon;Yun, Sang-Won
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.322-325
    • /
    • 2003
  • A 7/21GHz frequency tripler, using a commercially available packaged pHEMT, was designed and fabricated on 15mil RO3003 substrate. Frequency conversion is realized using the third harmonic current of an class B amplifier with rejection feedback at fundamental with optimum load conductance at the third harmonic. The fabricated frequency tripler has achieved a conversion loss of 0.7dB for an input power of 0dBm at 21GHz. The experimental results show good agreement with the harmonic balance simulation.

  • PDF

Design of Half-Wavelength Low-PASS Filter with Wideband Rejection Characteristic (광대역 저지특성을 갖는 반파장 저역통과 여파기 설계)

  • Kim Young-Tae;Kim Young-Ju;Park Jun-Seok;Kim Hyeong-Seok;Lim Jae-Bong;Cho Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.293-295
    • /
    • 2003
  • In this paper, planar harmonic rejection low-pass filter is proposed to effectively suppress spurious response in stop-band. For suppress the unwanted signal such as spurious and harmonics, we presented a new design method controlled the higher order modes. The proposed low-pass filter was shown to suppress the spurious response by more than $20{\sim}40dB$ compared with conventional microstrip low-pass filters. The filter is evaluated by experiment and simulation with good agreement and shown to have attractive properties such as wide stop band range and low insertion loss.

  • PDF

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).