• 제목/요약/키워드: Harmful gas

검색결과 343건 처리시간 0.024초

유기소자의 신뢰성에 영향을 주는 유해 자외선을 차단하기 위한 ALD기반 기능성 브래그반사경 구조 (ALD-based Functional Bragg Reflector Structure to Block Harmful Ultraviolet Rays that Affect the Reliability of Organic Devices)

  • 김현우;이형준;장승미;윤형준;이도균;이용민;박상연;정지훈;임석준;권정현
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.103-107
    • /
    • 2023
  • To solve the reliability problem of organic devices that are often used outdoors, multifunctional gas barriers that block reactive gases such as moisture and oxygen and reflect harmful light such as ultraviolet rays are needed. In this study, ALD nanolaminate-based optically functional n-DBR was developed to overcome the poor gas permeability of polymer substrates and protect organic devices from harmful light. n-DBR not only achieved a WVTR of 8.76 × 10-6 g·m-2·day-1, but also showed a visible light transmittance of 94.3% and an ultraviolet ray blocking ability of 2.67%. In particular, n-DBR based on a nanolaminate structure maintained its permeability characteristics even in a high temperature and high humidity environment despite being used as a layer of Al2O3. This functional barrier Structure can not only be used as a functional encapsulation barrier for the reliability of organic devices, but can also be used as a tinting film for vehicles.

  • PDF

대전지역 토양에서 유해 방사성가스인 라돈 농집에 대한 연구 (A Study on Harmful Radioactive Gas(Rn$_222$)-Concentration in Soils, Taejeon City)

  • 김승오;김해경
    • 한국환경과학회지
    • /
    • 제6권5호
    • /
    • pp.489-496
    • /
    • 1997
  • The arm of this study is to determine harmful radioactive gas($Rn^{222}$)-concentrations in soils and to suggest the anormalous regions of $Rn^{222}$-concentration in Taejeon area. The range of $Rn^{222}$-concentration in the soils (45 samples) of the survey area is 100 to 2, 475 (pCi/L) and mean$\pm$$\sigma$ of those values is 489$\pm$ 505 (pCi/L). The 2% (4 samples) of soil-gas samples (45 ones) collected In the survey area is corresponded to high rusk level, 53% (24 samples) to medium one and 43% (19 samples) to low one. Especially. The $Rn^{222}$-concentration is relatively higher in schistose granite region than in other rock Mts (two-mica granite and biotite ganite) in the survey area. The $Rn^{222}$-concentration is propotional to the uranium contents in the soils. The soil hardness among the various factors is correlative with $Rn^{222}$-concentrations. To prevent the damage from $Rn^{222}$-concentrations, It is necessary to close the cracks of underground structure and to consider methods reducing $Rn^{222}$-concentration for the anormalous regions.

  • PDF

A Study on the Development of Sensor-Based Smart Wappen System -Focus on UV Sensor and Gas Sensor-

  • Park, Jinhee;Kim, Jooyong
    • 패션비즈니스
    • /
    • 제22권6호
    • /
    • pp.94-104
    • /
    • 2018
  • The objective of this study was to develop a wearable systems that protect users, based on sensors that are easy to use, from accidents caused by harmful gases in the operator's poor working environment or the risk of ultraviolet rays during outdoor activities. By developing smart wappen with Light Emitting Diode (LED) light alarm function including UV sensor and gas sensor and central processing unit, systems that are applied to daily wear and work clothes to explore the possibility of user-centered, harmful environment monitoring products in real time were proposed. Each sensor was applied to sportswear and work clothes and the wappen system consisted of lightweight and thin form as a whole. Wappen to cover the device had one sheet cover on the front and another cover from the inside to form a sandwich like formation. Wappen was made in the same form as regular clothes that doesn't damage the exterior then a removable wappen system was developed using Velcro and snap methods to enable the separation of device or the exchange of batteries. De-adhesion method can occur in two ways, from the outside and from the inside, so the design is selected depending on the application. This study shows the significance of the development of sensor-based smart clothing, in that it presented a universal model for users.

Fabrication of 1D Metal Oxide Nanostructures Using Glancing Angle Deposition for High Performance Gas Sensors

  • Suh, Jun Min;Jang, Ho Won
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.228-234
    • /
    • 2017
  • Gas sensors based on metal-oxide-semiconductors are predominantly used in numerous applications including monitoring indoor air quality and detecting harmful substances such as volatile organic compounds. Nanostructures, e.g., nanoparticles, nanotubes, nanodomes, or nanofibers, have been widely utilized to improve the gas sensing properties of metal-oxide-semiconductors by increasing the effective surface area participating in the surface reaction with target gas molecules. Recently, 1-dimensional (1D) metal oxide nanostructures fabricated using glancing angle deposition (GAD) method with e-beam evaporation have been widely employed to increase the surface-to-volume ratio significantly with large-area uniformity and reproducibility, leading to promising gas sensing properties. Herein, we provide a brief overview of 1D metal oxide nanostructures fabricated using GAD and their gas sensing properties in terms of fabrication methods, morphologies, and additives. Moreover, the gas sensing mechanisms and perspectives are presented.

HCNG 엔진의 NOx 배출특성에 관한 연구 (A Study on the NOx Emission Characteristics of HCNG Engine)

  • 박철웅;김창기;최영;원상연;이선엽
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.78-83
    • /
    • 2011
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its high thermal efficiency and lower harmful emissions, including $CO_2$. Although the high octane value of natural gas increases engine output and efficiency due to the high compression ratio, this fuel is prone to such difficulties as a narrow limit of inflammability and a slow combustion speed in the lean burn operation domain, leading to unstable combustion and higher emissions of harmful exhaust gases. Hydrogen blended with natural gas can extend the lean burn limit while maintaining stable, efficient combustion and achieving lower NOx, hydrocarbon and green house gas emissions. In this study, the effect of hydrogen addition on an engine performance and NOx emission characteristics was investigated in a heavy duty natural gas engine. The results showed that thermal efficiency was increased and NOx emissions were reduced due to the expansion of lean operation range under stable operation. NOx emission can be significantly reduced with the retard of spark advance timing.

연료전지 발전을 위한 바이오가스정제 (Biogas Purifying for Fuel cell Power Plant)

  • 이종규;전재호
    • 상하수도학회지
    • /
    • 제21권4호
    • /
    • pp.439-444
    • /
    • 2007
  • Using the anaerobic digester gas as a fuel, fuel cells have the potential to provide significant environmental and economic benefits. A molten carbonate fuel cell power plant was installed in the municipal sewage works of Tancheon in Seoul. The fuel cell unit operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Korea. This article outlines the experiences of gas purification process with planning, installation and operation. The engineering and installation phase is described regarding to the special features of digester gas, for example impurities in gas composition. Such impurities would be harmful to fuel cells. Operational results from the field test with a gas purification process plant are presented in this paper.

단기통 디젤 기관의 배기관 가스유동에 관한 연구 (A Study on the Gas Flow in Exhaust Manifold of a Single Cylinder Diesel Engine)

  • 이정엽;고대권;조규학;장세호;안수길
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.14-19
    • /
    • 2003
  • A diesel engine has been widely used for ship and industry power because it has many merits of high thermal efficiency, reliability and durability. However its exhaust gas is harmful to human and air environment. Reducing the hurtful exhaust gas emissions, the study of the gas flow in the inlet and exhaust manifold is in progress in the world. In this paper we modeled the gas flow as one dimensional isentropic flow to predict the gas flow in the exhaust manifold. The method of characteristics was used for the model calculation, and the calculated results were compared with the experimental ones.

  • PDF

혼합기 형성-유입과정을 고려한 천연가스엔진 모델링 연구 (A Study of on a Natural Gas Engine Modeling for Mixture formation and Intake Process)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.13-20
    • /
    • 2009
  • Development of a dynamic engine model is essential to predict and analyze of dynamic characteristics from a natural gas engine. Reducing the harmful exhaust emissions can be accomplished by a precise air-fuel ratio control. In this paper, the dynamic engine model was proposed and included mixture formation and intake process because the dynamic characteristics can be affected by the mixture components such as an air and a gaseous fuel. The air mass flow, the partial pressure ratio, and the gas constant are changed by variations of the components in the mixture formation and intake process. The dynamic engine model is applied to the natural gas engine for validation test. Experimental results show that the dynamic engine model is effective to predict the dynamic characteristics of the natural gas engine.

  • PDF

금속산화물센서의 이산화염소 가스에 대한 감지거동에 관한 연구 (A Study on the Detection Behavior of Chlorine Dioxide on Metal Oxide Sensors)

  • 유준부;변형기
    • 센서학회지
    • /
    • 제29권3호
    • /
    • pp.211-214
    • /
    • 2020
  • Chlorine dioxide is very effective gas for sterilization or disinfection (in manufacturing), and does not produce harmful by-products after use. However, if its concentration exceeds 10 %, it become explosive and cannot be compressed or stored. Therefore, it is necessary to measure its concentration. In this study, the concentration of chlorine dioxide with a high oxidizing strength was measured using a metal oxide sensor. The sensor was a commercially available TGS series from Figaro. The sensitivity of the sensor was inversely proportional to a low concentration of chlorine dioxide gas below 6 ppm and returned to the initial resistance at about 6 ppm. When the gas concentration reached multiples of 10 ppm, resistance of the sensor increased to several megaohms.

Environmentally Friendly Hybrid Power System for Cultivators

  • Kim, Sang Cheol;Hong, Young Ki;Kim, Gook Hwan
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.274-282
    • /
    • 2014
  • Purpose: In this study, a hybrid power system was developed for agricultural machines with a 20-KW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator, which was evaluated using output tests. Methods: The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using the hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. Results: The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341 g/KWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7 KW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. Conclusions: The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. Lower exhaust gas emissions of the hybrid system have considerable advantages in closed work environments such as crop production facilities; therefore, agricultural machinery with less exhaust gas emissions should be commercialized. However, the high manufacturing cost and complexity of the proposed system are challenges which need to be solved in the future.