• Title/Summary/Keyword: Harmful gas

Search Result 345, Processing Time 0.031 seconds

Comparison of Combustion Characteristics with Combustion Strategy and Excess Air Ratio Change in a Lean-burn LPG Direct Injection Engine (직접분사식 LPG 엔진의 연소전략 및 공기과잉률 변화에 따른 연소특성 비교)

  • Cho, Seehyeon;Park, Cheolwoong;Oh, Seungmook;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.96-103
    • /
    • 2014
  • Liquefied Petroleum Gas(LPG) has attracted attention as a alternative fuel. The lean-burn LPG direct injection engine is a promising technology because it has an advantage of lower harmful emissions. This study aims to investigate the effect of combustion strategy and excess air ratio on combustion and emission characteristics in lean-burn LPG direct injection engine. Fuel consumption and combustion stability were measured with change of the ignition timing and injection timing at various air/fuel ratio conditions. The lean combustion characteristics were evaluated as a function of the excess air ratio with the single injection and multiple injection strategy. Furthermore, the feasibility of lean operation with stratified mixture was assessed when comparing the combustion and emission characteristics with premixed lean combustion.

Analysis of Heavy Metal Concentration on Working Clothes for Waste Incinerating Workers (생활폐기물 소각장 작업복의 중금속 분석)

  • Park, Soon-Ja
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.1
    • /
    • pp.39-53
    • /
    • 2007
  • The purpose of this study was to determine the characteristics of an experimental protective clothing material with regard to comfort and isolation from the hazardous heavy metals produced in municipal waste incineration. An analysis was conducted on the total concentrations of heavy metals in some parts such as surface, middle layer, and interior for the treated fabric, and the untreated one, and working clothes. We conclude that the processed fabric with charcoal for working clothes showed the least exposure to heavy metals of the three. Working clothes worn by workers during waste incineration were much more contaminated than the untreated and treated materials. The material of working clothes could be chosen according to the function with regard to its original chemical characteristics, which are the proper results of the dyeing process. The processed fabric material has high degrees of moisture regain, thermal insulation, water vapor penetration, and antibacterial function; consequently, it is much more comfortable to wear. The fabric material proposed in this research contributed much more to blocking heavy metal concentrations (such as Cd, Pb, Cu, Cr, Zn, Mn) than did the fabric of working clothes at present. Consequently, we strongly suggest that the material of working clothes be upgraded by adopting the above-mentioned charcoal-processed fabric. Materials of working clothes must be improved to increase comfort and prevent harmful gas, flying dust, and heavy metals from permeating the fabrics.

  • PDF

Matrix Solid-Phase Dispersion (MSPD) Isolation and Liquid Chromatographic Determination of Residual Furazolidone in Eggs (MSPD 전처리법과 HPLC를 이용한 Furazolidone의 계란내 잔류분석)

  • 서계원;이재일;이채용;이정치
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.2
    • /
    • pp.43-50
    • /
    • 2003
  • A liquid chromatographic method, using matrix solid-phase dispersion (MSPD) is developed for the extraction of residual furazolidone in chicken eggs. Blank or fortified egg samples (0.5 g) were blended with Octadecylsilyl (Bulk $C_{18}$, 40${\mu}{\textrm}{m}$, 18%. load, endcapped. 2 g) derivatized silica. After homogenization, $C_{18}$/egg and Na$_2$S $O_4$matrix were transferred to a column made of 10 ml glass syringe and filter paper and compressed 4.0∼4.5 ml volume. The column was washed with 8 ml of hexane and dried under $N_2$ gas. Furazolidone was eluted with acetonitrile (8 ml) under gravity. The eluate containing furazolidone was free from interfering compounds when analyzed by HPLC with UV detection (365 nm, photodiode array). Calibration curves were linear (r = 0.99985) and inter- (1.47%) and intra-assay (5.29%) variabilities for the concentration range examined (7.8∼497 ng/g of eggs, 20 ${mu}ell$ injection volume) were indicative of an acceptable methodology for the analysis of furazolidone. Average recovery of furazolidone added to egg was 96.2%. The limit of detection for the proposed method was 1 ng/g for furazolidone. The method using MSPD is proposed as an alternative assay to the classical method which involves the use of large volumes of a harmful solvent and requires a long tedious separation and clean-up processes prior to its determination.

The Development of VOC Measurement System Uging PCA & ANN (PCA와 ANN을 이용한 VOC 측정기기 개발)

  • Lee Jang-Hoon;Kwon Hyuk-Ku;Park Seung Ho;Kim Dong-Jin;Hong Chol-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2004
  • Air quality monitoring is a primary activity for industrial and social environment. The government identifies the pollutants that each industry must monitor. Especially, the VOCs (Volatile Organic Compounds), which are very harmful to human body and environment atmosphere, should be controlled under the government policy. However, the VOCs, which have not been confirmed in emission sources are very difficult to monitor. It is needed to develop the monitoring system that allow the continuous and in situ measurement of VOCs mixture in different environmental matrices. Gas chromatography and mass spectrometry are the most prevalent current techniques among those available for the analysis of VOCs. But, they need a large size analytical instrument, which costs a great deal for purchase and operation. In addition, it has some limitations for realtime environmental monitoring such as location problems and slow processing time. Recently, several companies have commercialized a portable VOCs measurement systems, which cannot classify various kinds of VOCs but total quantities. We have developed a VOCs measurement system, which recognizes various kinds and quantities of VOCs, such as benzene, toluene, and xylene (BTX). Also, it can be used as a stand- alone type and/or fixed type in the vehicle with rack for real -time environmental monitoring.

Deflective Behavior of Charged Particles in a Two-Stage Electrostatic Precipitator

  • Lim, Hun-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.83-91
    • /
    • 2011
  • Even if smoke, fumes, mist or dust particles are removed by electrostatic precipitators (ESPs), the occurrence of ozone, which is harmful to human body, has to be severely restricted in the indoor environments of hospitals, offices, and workshops. Therefore, the two-stage ESP generating positive corona at the ionizer is typically used because it creates less ozone than the two-stage ESP generating negative corona at the ionizer. In order to predict the collection performance and the optimal design of the two-stage ESP applied to positive high-voltage, particle concentration is experimentally investigated in this paper. In addition, particle motion within the collector section is also numerically analyzed. The positive corona discharge current of the ionizer is found to be affected by the applied voltage in the collector section but less so by the particle concentration. Particle concentration shows a minimum near the high voltage electrode of the collector section. The minimum value of the collection efficiency is almost proportional to gas velocity. When the collector length decreases, the minimum value of the collection efficiency increases. Charged particles entering the collector region are linearly deflected towards the grounded plate by an electric field. From the above experimental and numerical results, two empirical equations on the concentration ratio and the collection efficiency are derived, and are in good agreement with the experimental data.

Emission characteristic of ammonia in cement mortars using different sand from area of production

  • Jang, Hongseok;So, Hyoungseok;So, Seungyoung
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.241-246
    • /
    • 2016
  • This paper discusses the influence of organic matter contained in aggregate on the emission characteristic of ammonia ($NH_3$) from cement mortar. $NH_3$ can be released to indoor-outdoor environment through diffusion in mortar (or concrete) and have resulted in the increasing air pollution, and especially well known as a harmful gas for the human body. The concentration of $NH_3$ released from cement concrete was then compared to the contents of organic matter contained in the aggregate. The result indicates that the contents of organic matter in the aggregate significantly differ with types of aggregate from different areas of production. The organic matter becomes organic nitrogen through the process of microbial breakdown for a certain period and pure ammonium ion ($NH_4{^+}$) is produced from the organic nitrogen. The $NH_4{^+}$ was reacted with alkaline elements in the cement and released as $NH_3$ from cement concrete through a volatile process. The released $NH_3$ was proportional to the contents of $NH_4{^+}$ adsorbed in the aggregate from different areas of production and the concentrations of $NH_3$ emission from cement mortar according to the aggregate differ by more than 4 times.

Applications of Ozone Micro- and Nanobubble Technologies in Water and Wastewater Treatment: Review (정수 및 폐수처리에서 오존 미세기포와 초미세기포 기술의 적용 : 리뷰)

  • Tekile, Andinet;Kim, Ilho;Lee, Jai-Yeop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.481-490
    • /
    • 2017
  • Water and wastewater treatment has always been a challenging task due to the continuous increase in amount and the change in characteristics of the poorly biodegradable and highly colored organic matters, as well as harmful micro-organisms. Advanced techniques are therefore required to successfully remove these pollutants from water before reuse or discharge to receiving water bodies. Application of ozone, which is a powerful oxidant and disinfectant, alone or as part of advanced oxidation process depends on the complex kinetic reactions and the mass transfer of ozone involved. Micro- and nano bubbling considerably improves gas dissolution compared to conventional bubbles and hence mass transfer. It can also intensify generation of hydroxyl radical due to collapse of the bubbles, which in turn facilitates oxidation reaction under both alkaline as well as acidic conditions. This review gives the overview of application of micro- and nano bubble ozonation for purification of water and wastewater. The drawbacks of previously considered techniques and the application of the hydrodynamic ozonation to synthetic aqueous solutions and various industrial wastewaters are systematically reviewed.

Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye (나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서)

  • Jung, Suenghwa;Cho, Yeong Beom;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.420-426
    • /
    • 2017
  • A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

Prediction of Service Life of a Respirator Cartridge for Organic Solvent by Using Yoon and Nelson's Adsorption Model (Yoon과 Nelson의 흡착모델을 이용한 방독마스크 정화통의 수명예측(I))

  • Kim, Ki-Hwan;Won, Jung-Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.1
    • /
    • pp.20-31
    • /
    • 2008
  • A respirator is useful to protect a worker from the harmful gases and vapors in the workplace, and the evaluation of respirator cartridge service life is important for the worker's health and safety. The performance of cartridge is effected by several factors such as concentration of gas and vapor, humidity, temperature, adsorbents and cartridge packing density. Adsorption model was applied to both sampling tube and respirator cartridge to predict the service life for organic vapors. The variables of the adsorption model were measured from the experiment with the sampling tube, and it was used to predict the service life of respirator cartridge. In the experiment, we used carbon tetrachloride as a organic vapor and activated carbon take out respirator cartridge as activated carbon. As a result, it was possible to predict the service life of respirator cartridge and predicted service life was quite correct. Breakthrough time decreased with increase of CCl4 concentration. In case of sampling tube, adsorbed amount of CCl4 was larger than respirator cartridge due to linear velocity. Also, rate constant of sampling tube was larger than respirator cartridge, because of, effect of flow rate, packing density. In the prediction of service life of respirator cartridge by using sampling tube, the time required for 50% contaminant breakthrough(${\tau}$) is more effective than the rate constant(k').

A Study on Characteristics of Fire Temperature and Concentration of Toxic Gases while the Door Opening or Closed on Multi-layered Construction (복층건물의 출입문 개방여부에 따른 화재온도분포 및 독성가스 농도 변화특성에 관한 연구)

  • Lee, Jungyun;Kim, Jeonghun;Kim, Eungsik;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.72-77
    • /
    • 2017
  • In S. Korea, recently, building fire accidents of residential accommodations or recreational facilities have taken place more frequently than before. Among various building constructions, Multi-layered structure, such as office-residential complex, are mostly made in S. korea. $O_2$, $CO_2$, CO, $NO_x$, $SO_x$, and HCl, these gases has toxic hazard and harmful for human body. And it is predicted that different concentration of released gases from diesel pool fire with upper and lower layer. Therefore, this study reports the fire characteristics of Multi-layered structure by analyzing the fire behavior and concentration of combustion gases of a experimental compartment via real scale fire experiment, in order to predict risks and secure safety for similar fire accidents.