• Title/Summary/Keyword: Hardy-Hilbert type inequality

Search Result 4, Processing Time 0.022 seconds

A NEW EXTENSION ON THE HARDY-HILBERT INEQUALITY

  • Zhou, Yu;Gao, Mingzhe
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.547-556
    • /
    • 2012
  • A new Hardy-Hilbert type integral inequality for double series with weights can be established by introducing a parameter ${\lambda}$ (with ${\lambda}>1-\frac{2}{pq}$) and a weight function of the form $x^{1-\frac{2}{r}}$ (with $r$ > 1). And the constant factors of new inequalities established are proved to be the best possible. In particular, for case $r$ = 2, a new Hilbert type inequality is obtained. As applications, an equivalent form is considered.