• Title/Summary/Keyword: Hardware-in-the-loop

Search Result 525, Processing Time 0.035 seconds

Development of HILS System for Performance Analysis of the ABS ECU for Commercial Vehicles (상용차용 ABS ECU의 성능분석을 위한 HILS 시스템 개발)

  • 황돈하;이기창;전정우;김용주;조정목;조중선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.898-906
    • /
    • 2002
  • Antilock Brake System (ABS) is designed to prevent wheels from being locked-up under emergency braking of a vehicle. Therefore it improves directional stability of the vehicle, shortens stopping distance, and enhances maneuvering during braking, regardless of road conditions. Hardware In-the-Loop Simulation (HILS) is an effective tool for design Performance evaluation and test of vehicle subsystems such as ABS, active suspension, and steering systems. This paper describes a HILS model for ABS/ ASR(Acceleration Slip Regulation) system applications. A fourteen degrees-of-freedom vehicle dynamics model is simulated in an alpha-chip processor board. The proposed HILS system is tested with a basic ABS control algorithm. The design and implementation of HILS system for the ABS ECU(Electronic Control Unit) development of commercial vehicle are presented. The results show that the proposed HILS system can be used to test the performance, stability, and reliability of a vehicle under braking.

The Study of Gateway Control Module Using SAE J1939 Protocol (SAE J1939 프로토콜기반 Gateway 제어모듈 개발에 관한 연구)

  • Ko, Youngjin;Kim, Doyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • This study presents the development of Gateway Control Module using SAE J1939 protocol for the commercial vehicles. Presently, the load rate of CAN bus is increased by the single network composition and addition of new ECUs for development of intelligent vehicles. Because the embedded system of the integrated network control function has the errors of the CAN bus caused by the increase of ECU, it is needed for development of commercial vehicles. Also, this study presents the development of smart functions that can diagnosis CAN bus errors, fault diagnosis of ECU and basic function that arbitrates CAN bus between ECUs of commercial vehicle. GCM was designed for 4channel separation about Gateway function as solution of load rate decrease and smart functions. HILS(Hardware in the loop simulation)system that can achieve simulation about CAN Messages of all systems on vehicle was applied to evaluate performance and verification of all functions and performance. The load rate on CAN bus was decreased at using functions what was delivery, block and process of GCM. Through this, it was enabled to organize systematic architecture for gateway.

Development of Pilot Plant for Distributed Intelligent Management System of Microgrids (멀티에이전트 시스템을 이용한 마이크로그리드 분산 지능형 관리시스템 파일럿 플랜트 개발)

  • Oh, Sang-Jin;Yoo, Cheol-Hee;Chung, Il-Yop;Lim, Jae-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.322-331
    • /
    • 2013
  • This paper describes the development of the pilot plant of distributed intelligent management system for a microgrid. For optimal control and management of microgrids, intelligent agents area applied to the microgrid management system. Each agent includes intelligent algorithms to make decisions on behalf of the corresponding microgrid entity such as distributed generators, local loads, and so on. To this end, each agent has its own resources to evaluate the system conditions by collecting local information and also communicating with other agents. This paper presents key features of the data communication and management of the developed pilot plant such as the construction of mesh network using local wireless communication techniques, the autonomous agent coordination schemes using plug-and-play functions of agents and contract net protocol (CNP) for decision-making. The performance of the pilot plant and developed algorithms are verified via real-time microgrid test bench based on hardware-in-the-loop simulation systems.

A Study of An Initial Alignment Method of Underwater Vehicle Dropped from Aircraft (항공기에서 투하되는 수중운동체의 초기정렬기법 연구)

  • 류동기;김삼수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • The Strap Down Inertial Measurement Unit(SDIMU) is recently used for the sensor package of the modern underwater vehicles such as torpedoes and unmanned underwater-vehicles. For using SDIMU, an initial alignment must be carried out before the fire or navigation stage. The general initial alignment methods require that a mother vehicle Is a stationary condition or the Inertial Navigation System(INS) of vehicle is received the specific of data navigation from the mother vehicle. But an underwater vehicle dropped from aircraft is hard to satisfy above both necessary conditions of the general initial alignment. So, we suggest a new strap down initial alignment method of an underwater vehicle dropped from aircraft without using any aided sensors. The highlight point of this method is that a period of initial alignment is not before the fire but during running stage to fix alignment error. And we verify it by analyzing various data of S/W simulations, Hardware In the Loop Simulation(HILS) tests and sea trials.

Sensing of Three Phase PWM Voltages Using Analog Circuits (아날로그 회로를 이용한 3상 PWM 출력 전압 측정)

  • Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1564-1570
    • /
    • 2015
  • This paper intends to suggest a sensing circuit of PWM voltage for a motor emulator operated in the inverter. In the emulation of the motor using a power converter, it is necessary to measure instantaneous voltage at the PWM voltage loaded from the inverter. Using a filter can generate instantaneous voltage, while it is difficult to follow the rapidly changing inverter voltage caused by the propagation delay and signal attenuation. The method of measuring the duty of PWM using FPGA can generate output voltage from the one-cycle delay of PWM, while the cost of hardware is increasing in order to acquire high precision. This paper suggests a PWM voltage sensing circuit using the analogue system that shows high precision, one-cycle delay of PWM and low-cost hardware. The PWM voltage sensing circuit works in the process of integrating input voltage for valid time by comparing levels of three-phase PWM input voltage, and produce the output value integrated at zero vector. As a result of PSIM simulation and the experiment with the produced hardware, it was verified that the suggested circuit in this paper is valid.

Model and component based modeling and simulation of a supersonic propulsion system (모델 및 구성품 기반 초음속 추진기관 실시간 모델링 및 시뮬레이션)

  • Choi, J.H.;Park, I.S.;Lee, J.Y.;Kim, J.H.;Kim, I.S.;Yoon, H.G.;Lim, J.S.;Kim, C.B.;Park, J.M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.579-583
    • /
    • 2011
  • The component based propulsion modeling and simulation of an air-breathing engine such as ramjet and scramjet is studied. The simulation model has been realized considering the characteristics of the air-breathing engine which is composed of air intake, combustor and nozzle including engine controller and fuel supply system. To estimate the engine performance and to verify the engine controller, real time based Hardware in the Loop System simulating actual environment is constructed.

  • PDF

Development of Navigation HILS System for Integrated Navigation Performance Analysis of Large Diameter Unmanned Underwater Vehicle (LDUUV) (대형급 탐색용 무인잠수정 복합항법 성능 분석을 위한 항법 HILS 시스템 개발)

  • Yoo, Tae-Suk;Kim, Moon Hwan;Hwang, Jong Hyun;Yoon, Seon Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.367-373
    • /
    • 2016
  • This paper describes the development of a navigation HILS (hardware in the loop simulation) system for an integrated navigation performance analysis of a large diameter unmanned underwater vehicle (LDUUV). The HILS system was used for the performance analysis of the LDUUV. When a conventional HILS system is used, it is not possible to calculate the velocity and position using an inertial navigation system (INS). To cope with this problem, an external acceleration was generated. To evaluate the proposed method, we compare the results of a Monte Carlo simulation and navigation HILS experiment.