• Title/Summary/Keyword: Hardware-in-the-loop

Search Result 525, Processing Time 0.033 seconds

An Efficient Adaptive Loop Filter Design for HEVC Encoder (HEVC 부호화기를 위한 효율적인 적응적 루프 필터 설계)

  • Shin, Seung-yong;Park, Seung-yong;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.295-298
    • /
    • 2014
  • In this paper, an efficient design of HEVC Adaptive Loop Filter(ALF) for filter coefficients estimation is proposed. The ALF performs Cholesky decomposition of $10{\times}10$ matrix iteratively to estimate filter coefficients. The Cholesky decomposition of the ALF consists of root and division operation which is difficult to implement in a hardware design because it needs to many computation rate and processing time due to floating-point unit operation of large values of the Maximum 30bit in a LCU($64{\times}64$). The proposed hardware architecture is implemented by designing a root operation based on Cholesky decomposition by using multiplexer, subtracter and comparator. In addition, The proposed hardware architecture of efficient and low computation rate is implemented by designing a pipeline architecture using characteristic operation steps of Cholesky decomposition. An implemented hardware is designed using Xilinx ISE 14.3 Vertex-6 XC6VCX240T FPGA device and can support a frame rate of 40 4K Ultra HD($4096{\times}2160$) frames per second at maximum operation frequency 150MHz.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological(MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three point mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) using HILS method and presented in time and frequency domain.

A Research on Naval Electronic Warfare System Engagement HILS Technology (해상 전자전체계 조우 HILS 연구)

  • Shin, Dong-Cho;Lee, Jeong-Hoon;Ryu, Si-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.785-792
    • /
    • 2010
  • This paper on the Research of Naval Electronic Warfare System HILS(Hardware In the Loop System) describes the EW engagement HILS construction method for evaluation of the operational concept analysis on active RF Decoy in staying in the air and the deceit ability to anti-ship missile seeker. We obtain the EW M&S technology of EW engagement HILS and EW efficiency analysis from this project. This Naval Electronic Warfare System HILS technology will support Active Decoy Development Project and any other HILS of EW weapon in KOREA ARMY/NAVY/AIR FORCE.

A Study on a Test Platform for AWS (All-Wheel-Steering) ECU (Electronic Control Unit) of the Bi-modal Tram (저상굴절버스 조향시스템 전자제어장치의 테스트플랫폼 구축에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyeong-Ho;Park, Tae-Won;Kim, Ki-Jung;Choi, Sung-Hun;Kim, Young-Mo
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1051-1059
    • /
    • 2008
  • In the development process of an ECU (Electrical Control Unit), numerous tests are necessary to evaluate the performance and control algorithm. The vehicle based test is expensive and requires long time. Also, it is difficult to guarantee the safety of the test driver. To overcome the various problems faced in the development process, the ECU test has been done using HIL (Hardware In the Loop). The HIL environment has the actual hardware including an ECU and a virtual vehicle model. In this paper, the test platform environment is devloped for the AWS ECU black box test. The test platform is built on HIL (Hardware In the Loop) architecture. Using the developed test platform, the control algorithm of the AWS ECU can be evaluated under the virtual driving condition of the bi-modal tram. Driving conditions, such as a front steering angle and vehicle velocity, are defined through the PC (Personal Computer) input. Input signals are transformed to electrical signals in the PC. These signals become the input conditions of the AWS ECU. The AWS ECU is stimulated by arbitory input conditons, and responses of the system are observed.

  • PDF

Road Adaptive Skyhook Control and HILS for Semi-Active Macpherson Suspension Systems (맥퍼슨형 반능동 현가장치의 노면적응형 스카이훅 제어와 HILS)

  • 박배정;홍금식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.34-44
    • /
    • 2000
  • In this paper, a modified skyhook control for the semi-active Macpherson suspension system is investigated. A new model for the semi-active type suspension, which incorporates the rotational motion of the unsprung mass, is introduced and an output feedback control law using the skyhook control method is derived. The gains in the skyhook controller are adaptively adjusted by estimating the road conditions. Because two vertical acceleration sensors, one for the sprung mass and another for the unsprung mass, are used rather than using the angle sensor for the rotational motion of the control arm, the relative velocity of the rattle space is filtered using the acceleration signals. For testing the control performance, the actual damping force has been incorporated via the hardware-in-the-loop simulations. The performances of a passive damper and a semi-active damper are compared. Simulation results are provided.

  • PDF

Performance Evaluation on an Active Camera Mount System for UAV via Hardware-in-the-loop-simulation (HILS를 통한 무인항공기 카메라 지지 능동 마운트 시스템의 진동제어 성능 평가)

  • Oh, Jong-Suk;Choi, Seung-Bok;Cho, Han-Jun;Lee, Chul-Hee;Cho, Myeong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.767-773
    • /
    • 2010
  • In the present work, vibration control performance of piezoactuator-based active mount system for unmanned aero vehicle(UAV) equipment is evaluated via hardware in the loop simulation(HILS). At first, the vibration level of UAV is measured and from this vibration data, the proper piezostack actuator is selected. Then, the dynamic model of active mount system including four active mounts and UAV camera equipment is derived. In order to evaluate vibration control performance, the HILS system is constructed. The proposed mount is prepared as hardware part and the other mounts are considered in software part. A sliding mode controller is designed and implemented to the HILS system. Effective vibration control results are presented in both time and frequency domains.

DEVELOPMENT OF A NETWORK-BASED TRACTION CONTROL SYSTEM, VALIDATION OF ITS TRACTION CONTROL ALGORITHM AND EVALUATION OF ITS PERFORMANCE USING NET-HILS

  • Ryu, J.;Yoon, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.687-695
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units(ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electric throttle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

A Study on the Autonomous Powered Ram Air Parafoil System Considering Wind Effect (바람 효과를 고려한 동력 램에어 파라포일 자동비행 시스템 연구)

  • Kim, Tae-Wook;Song, Yongkyu;Jeong, Dongho;Gwon, Oseong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • In this work a guidance and control system for an a powered ram air parafoil under wind disturbance is considered. After analyzing a 6 Dof and 9 Dof nonlinear dynamic models of the parafoil, wind effect is added to them. In order to actively respond to the wind acting on the transverse direction of the vehicle a new guidance algorithm is proposed. After a Hardware-In-the-Loop Simulation (HILS) study, flight tests are performed to demonstrate its potential under wind disturbances.

Effects of the Sampling Time in Motion Controller Implementation for Mobile Robots (모바일 로봇 모션 제어에 있어 샘플링 시간의 효과)

  • Jang, Tae-Ho;Kim, Youngshik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.154-161
    • /
    • 2014
  • In this research we investigate motion controller performance for mobile robots according to changes in the control loop sampling time. As a result, we suggest a proper range of the sample time, which can minimize final posture errors while improving tracking capability of the controller. For controller implementation into real mobile robots, we use a smooth and continuous motion controller, which can respect robot's path curvature limitation. We examine motion control performance in experimental tests while changing the control loop sampling time. Toward this goal, we compare and analyze experimental results using two different mobile robot platforms; one with real-time control and powerful hardware capability and the other with non-real-time control and limited hardware capability.