• Title/Summary/Keyword: Hardware-in-the-Loop(HIL) Simulation

Search Result 76, Processing Time 0.031 seconds

Real-Time HIL Simulation of the Discontinuous Conduction Mode in Voltage Source PWM Power Converters

  • Futo, Andras;Kokenyesi, Tamas;Varjasi, Istvan;Suto, Zoltan;Vajk, Istvan;Balogh, Attila;Balazs, Gergely Gyorgy
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1535-1544
    • /
    • 2017
  • Advances in FPGA technology have enabled fast real-time simulation of power converters, filters and loads. FPGA based HIL (Hardware-In-the-Loop) simulators have revolutionized control hardware and software development for power electronics. Common time step sizes in the order of 100ns are sufficient for simulating switching frequency current and voltage ripples. In order to keep the time step as small as possible, ideal switching function models are often used to simulate the phase legs. This often produces inferior results when simulating the discontinuous conduction mode (DCM) and disabled operational states. Therefore, the corresponding measurement and protection units cannot be tested properly. This paper describes a new solution for this problem utilizing a discrete-time PI controller. The PI controller simulates the proper DC and low frequency AC components of the phase leg voltage during disabled operation. It also retains the advantage of fast real-time execution of switch-based models when an accurate simulation of high frequency junction capacitor oscillations is not necessary.

Development of Brake Controller for fixed-wing aircraft using hardware In-the-Loop Simulation

  • Lee, Ki-Chang;Jeon, Jeong-Woo;Hwang, Don-Ha;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.535-538
    • /
    • 2005
  • Today, most fixed-wing aircrafts are equipped with the antiskid brake system. It can modulate braking moments in the wheels optimally, when an aircraft is landing. So it can reduce landing distance and increase safeties. The antiskid brake system for an aircraft are mainly composed of braking moment modulators (hydraulic control valves) and brake control unit. In this paper, a Mark IV type - fully digital - brake controller is studied. For the development of its control algorithms, a 5-DOF (Degree of Freedom) aircraft landing model is composed in the form of matlab/simulink model at first. Then, braking moment control algorithms using wheel decelerations and slips are made. The developed algorithms are tested in software simulations using state-flow toolboxes in matlab/simulink model. Also, a real-time simulation systems are made, which use hydraulic brake systems of a real aircraft, pressure control valves and its controller as hardware components of HIL(Hardware In-the-Loop) simulation. Algorithms tested in software simulations are coded into the controller and the real-time landing simulations are made in very severe road conditions. The real-time simulation results are presented.

  • PDF

Development of HILS System for VDC (VDC를 위한 HILS 시스템 개발에 관한 연구)

  • 박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2003
  • HILS(Hardware-ln-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for VDC(Vehicle Dynamics Control) with a valve control system that modulates the brake pressures at low wheels. Two VDC control logics were developed and tested in the HILS system. Test results under various driving conditions are presented in this paper.

Development of the SVPG(Sungkyunkwan Univ. Virtual Proving Ground) : System Configuration and Application of the Virtual Proving Ground (가상주행시험장(SVPG) 개발: 가상주행시험장의 시스템 구성 및 운영)

  • 서명원;구태윤;권성진;신영수;조기용;박대유
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.195-202
    • /
    • 2002
  • By using modeling and simulation. today's design engineers are simultaneously reducing time to market and decreasing the cost of development, while increasing the quality and reliability of their products. A driving simulator is the best example of this method and allows virtual designs of control systems, electronic systems, mechanical systems and hydraulic system of a vehicle to be evaluated before costly prototyping. The objective of this Paper is to develop the virtual Proving: ground using a driving simulator and to show its capabilities of an automotive system development tool. For this purpose, including a real-time vehicle dynamics analysis system, the PC-based driving simulator and the virtual proving ground are developed by using VR(Virtual Reality) techniques. Also ABS HIL(Hardware-In-the-Loop ) simulation is performed successfully.

A Simulation Technique of the Shipboard INS Transfer Alignment Environments using Hardware-In-the-Loop Simulation (HILS를 이용한 함정의 관성항법장치 전달정렬 환경 모의 기법)

  • Kim, Woon-Sik;Yang, Tae-Soo;Kim, Sang-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.181-188
    • /
    • 2011
  • A simulation technique, which simulate dynamic motion and communication environments of ship in the lab, is needed in order to reduce the testing cost when we evaluate the transfer alignment performance of shipboard INS. Hardware-In-the-Loop Simulation(HILS) can be used as an effective test method for those system because it can provide flexible and realistic simulation environments, various test scenario, and repeated test environment in the lab without additional cost and person. This paper presents the methods for implementing the real time HILS environment for testing transfer alignment performance of shipboard INS. It includes real time executive for controlling realtime simulation and calculating the ship motion, communication method for interfacing between the systems, and coordinate transformation method for converting real ship coordinate attitude data to lab coordinate attitude data.

Hardware-in-the-loop Simulation of CNC-controlled Feed Drives (CNC 제어 이송계의 Hardware-in-the-loop 시뮬레이션)

  • Lee, Wonkyun;Lee, Chan-Young;Kim, Joo-Yeong;Song, Chang Kyu;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.447-454
    • /
    • 2015
  • Design and application of hardware-in-the-loop simulation (HILS) for design of CNC-controlled machine tool feed drives is discussed. The CNC machine tool is a complex mechatronics system where the complexity results from the software-based controller composed of a variety of functionalities and advanced control algorithms. Therefore, using a real CNC controller in the control simulation has merits considering the efforts and accuracy of the simulation modeling. In this paper challenges in HILS for a CNC controlled feed drive, such as minimization of time delay and transmission error that are caused by discretization of the feed drive model, is elaborated. Using an experimental HILS setup of a machine tool feed drive applications in controller gain selection and CNC diagnostics are presented.

Development of HIL simulator for performance validation of stack inlet gases temperature controller of marine solid oxide fuel cell system (선박용 고체산화물형 연료전지 시스템의 스택 공급 가스 온도 제어기 성능 검증을 위한 HIL 시뮬레이터 개발)

  • Ahn, Jong-Woo;Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.582-588
    • /
    • 2013
  • Solid Oxide Fuel Cell (SOFC) has been focused as a promising power source, which can replace a diesel engine regarding as major source of air pollution by the ship, due to high efficiency and eco-friendly. High operating temperature of SOFC is enable to secure of high efficiency, use various fuels and no need of high priced catalyst, but it may damage to components of SOFC. Therefore temperature control system has to be designed and validated before employing the fuel cell system for securing high efficiency and reliability. In this paper, instead of using typical method to validate performance of the controller, which consumes high cost and time, performance validation system using Hardware-in-the-loop simulation was developed and validated performence of the designed temperature controller for SOFC system.

An Antilock Brake Controller Design Using Hardware In-the Loop Simulation (Hardware In-the Loop Simulation을 이용한 미끄럼방지 제동제어기의 설계)

  • Lee, Ki-Chang;Jeon, Jung-Woo;Hwang, Don-Ha;Lee, Se-Han;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2320-2322
    • /
    • 2004
  • 전자제어식 미끄럼방지 제동장치 (ABS, Antilock Brake System)는 차량의 급제동시 발생할 수 있는 바퀴의 슬립을 방지하여 차량의 제동거리를 단축시키고 주행 성능을 향상시키는 차량 내 안전장치이다. 지난 몇 년 동안 공압식 제동시스템을 사용하는 대형차량에 적합한 미끄럼방지 제동 제어기를 연구해 왔다. 이 제어기는 바퀴의 슬립율과 그 변화량을 이용한 제어 법칙을 유도하여, 제어 파라미터로 사용하고 있다. 이러한 제어 파라미터의 튜닝에는 맡은 반복적인 실험이 요구된다. 이러한 요구에 부응하기 위하여 차량의 제동을 실시간으로 모사 할 수 있는 HILS (Hardware In-the Loop Simulation) 시스템을 개발, 구축하였다. 개발 HILS는 공압식 브레이크 시스템 및 14 자유도를 가지는 차량 동역학 모델 및 타이어-바퀴 동역학을 소프트웨어 모델로 사용하고, 개발 중인 전자제어식 미끄럼 방지 제동 제어기를 하드웨어로 사용하여, 바퀴속도 센서 신호 모의 장치 및 공압 엑추에이터 모의 신호등의 인터페이스 장치를 사용하여 제동중인 차량의 상태를 실시간으로 시뮬레이션 및 감시할 수 있다. 이 개발 HILS를 이용하여 제동 제어기의 제어 파라미터의 튜닝을 짧은 시간에 성공적으로 끝낼 수 있었을 뿐만 아니라, HILS 실험을 마친 제어기는 미끄럼 방지 제동 시험장에서 실차 주행 시험을 무사히 마침으로써, 개발 기간과 비용을 절감할 수 있는 하드웨어를 이용하는 시뮬레이션의 효용성을 간접적으로 증명하였다.

  • PDF

A Comparison of the Way-points and the Event-points and the Event-driven Dynamic Trajectory Modeling (Way-points 방식과 Event-driven 방식의 운동궤적 모델링 비교)

  • 김옥휴
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.88-92
    • /
    • 1999
  • As a part of work to simulate electromagnetic environments for Hardware-In-the-Loop(HIL) simulation, the dynamic trajectory is modeled by the Way-points method and the Event-driven method for the aerial and the naval targets. The simulated results show that the Way-points method and the Event-driven method are appropriate to simulate a low speed and a high speed target respectively.

  • PDF